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Sliced Inverse Regression for Dimension Reduction
KER-CHAU LI*

Modern advances in computing power have greatly widened scientists’ scope in gathering and investigating information from
many variables, information which might have been ignored in the past. Yet to effectively scan a large pool of variables is not
an easy task, although our ability to interact with data has been much enhanced by recent innovations in dynamic graphics. In
this article, we propose a novel data-analytic tool, sliced inverse regression (SIR), for reducing the dimension of the input variable
x without going through any parametric or nonparametric model-fitting process. This method explores the simplicity of the
inverse view of regression; that is, instead of regressing the univariate output variable y against the multivariate x, we regress
x against y. Forward regression and inverse regression are connected by a theorem that motivates this method. The theoretical
properties of SIR are investigated under a model of the form, y = f(B,x, ..., ByX, €), where the B,’s are the unknown row
vectors. This model looks like a nonlinear regression, except for the crucial difference that the functional form of fis completely
unknown. For effectively reducing the dimension, we need only to estimate the space [effective dimension reduction (e.d.r.)
space] generated by the B,’s. This makes our goal different from the usual one in regression analysis, the estimation of all the
regression coefficients. In fact, the B,’s themselves are not identifiable without a specific structural form on f. Our main theorem
shows that under a suitable condition, if the distribution of x has been standardized to have the zero mean and the identity
covariance, the inverse regression curve, E(x | y), will fall into the e.d.r. space. Hence a principal component analysis on the
covariance matrix for the estimated inverse regression curve can be conducted to locate its main orientation, yielding our estimates
for e.d.r. directions. Furthermore, we use a simple step function to estimate the inverse regression curve. No complicated
smoothing is needed. SIR can be easily implemented on personal computers. By simulation, we demonstrate how SIR can
effectively reduce the dimension of the input variable from, say, 10 to K = 2 for a data set with 400 observations. The spin-
plot of y against the two projected variables obtained by SIR is found to mimic the spin-plot of y against the true directions

very well. A chi-squared statistic is proposed to address the issue of whether or not a direction found by SIR is spurious.

KEY WORDS: Dynamic graphics; Principal component analysis; Projection pursuit.

1. INTRODUCTION

Regression analysis is a popular way of studying the re-
lationship between a response variable y and its explanatory
variable x, a p-dimensional column vector. Quite often, a
parametric model is used to guide the analysis. When the
model is parsimonious, standard estimation techniques such
as the maximum likelihood or the least squares method have
proved to be successful in gathering information from the
data.

In most applications, however, any parametric model is
at best an approximation to the true one, and the search for
an adequate model is not easy. When there are no persua-
sive models available, nonparametric regression techniques
emerge as promising alternatives that offer the needed flex-
ibility in modeling. A common theme of nonparametric
regression is the idea of local smoothing, which explores
only the continuity or differentiability property of the true
regression function. The success of local smoothing hinges
on the presence of sufficiently many data points around each
point of interest in the design space to provide adequate
information. For one-dimensional problems, many smooth-
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ing techniques are available (see Eubank 1988 for a com-
prehensive account).

As the dimension of x gets higher, however, the total
number of observations needed for local smoothing esca-
lates exponentially. Unless we have a gigantic sample,
standard methods, such as kernel estimates or nearest-
neighbor estimates, break down quickly because of the
sparseness of the data points in any region of interest. To
challenge the curse of dimensionality, one hope that stat-
isticians may capitalize on is that interesting features of high-
dimensional data are retrievable from low-dimensional pro-
jections. For regression problems, the following model de-
scribes such an ideal situation:

y =f(BiX, BxX, ..., BxX, €). (1.1)

Here the B’s are unknown row vectors, € is independent of
x, and fis an arbitrary unknown function on R**'.

When this model holds (cf. Remark 1.1), the projection
of the p-dimensional explanatory variable x onto the K di-
mensional subspace, (B;X, ..., BxX)', captures all we need
to know about y. When K is small, we may achieve the
goal of data reduction by estimating the $’s efficiently. For
convenience, we shall refer to any linear combination of
the B’s as an effective dimension-reduction (e.d.r.) direc-
tion, and to the linear space B generated by the 8’s as the
e.d.r. space. More discussion on this model, e.d.r. direc-
tions, and the relation to other approaches is given in Sec-
tion 2. Our main focus in this article is on the estimation
of the e.d.r. directions, leaving questions such as how to
estimate main features of f for further investigation. Intu-
itively speaking, after estimating the e.d.r. directions, stan-
dard smoothing techniques can be more successful because
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the dimension has been lowered (cf. Remark 1.2). On the
other hand, during the exploratory stage of data analysis,
one often wants to view the data directly. Many graphical
tools are available (see, for instance, the special applica-
tions section on statistical graphics, introduced by Cleve-
land 1987), but plotting y against every combination of x
within a reasonable amount of time is impossible. So, to
use the scatterplot-matrix techniques (Carr et al. 1987), we
often focus on coordinate variables only. Likewise, 3-D ro-
tating plots (e.g., see Huber 1987) can handle only one
two-dimensional projection of x at a time (the third dimen-
sion is reserved for y). Therefore, to take full advantage of
modern graphical tools, guidance on how to select the pro-
jection directions is clearly called for. A good estimate of
the e.d.r. directions can lead to a good view of the data.
Section 6.3 demonstrates how sharp the view found by our
method is.

Our method of estimating the e.d.r. directions is based
on the idea of inverse regression. Instead of regressing y
against x (forward regression) directly, we regress x against
y (inverse regression). The immediate benefit for exchang-
ing the roles of y and x is that we can side-step the di-
mensionality problem. This comes out because inverse
regression can be carried out by regressing each coordinate
of x against y. Thus we essentially deal with a one-dimen-
sion to one-dimension regression problem, rather than the
high-dimensional forward regression.

The feasibility of finding the e.d.r. directions via inverse
regression will become clear. As y varies, E(x | y) draws
a curve, called the inverse regression curve, in R?. Under
(1.1), however, this curve typically will hover around a K-
dimensional affine subspace. At one extreme, as shown in
Theorem 3.1 of Section 3, the inverse regression curve ac-
tually falls into a K-dimensional affine subspace determined
by the e.d.r. directions, provided that the distribution of x
satisfies (3.1). If we have standardized x to have mean O
and the identity covariance, then this subspace coincides
with the e.d.r. space. Elliptically symmetric distributions,
including the normal distribution, satisfy condition (3.1).

Exploring the simplicity of inverse regression, we de-
velop a simple algorithm, called sliced inverse regression
(SIR), for estimating the e.d.r. directions. After standard-
izing x, SIR proceeds with a crude estimate of the inverse
regression curve E(x | y), which is the slice mean of x after
slicing the range of y into several intervals and partitioning
the whole data into several slices according to the y value.
A principal component analysis is then applied to these slice
means of X, locating the most important K-dimensional
subspace for tracking the inverse regression curve E(x | y).
The output of SIR is these components after an affine re-
transformation back to the original scale.

In Section 5, under the design condition of (3.1), we show
that SIR yields root n consistent estimates for the e.d.r.
directions.

Besides offering estimates of e.d.r. directions, the out-
puts of SIR are themselves interesting descriptive statistics
containing useful information about the inverse regression
curve. In Section 7, we elaborate this point further and ar-
gue that the directions produced by SIR can be used to form
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variables (derivable from x linearly) that are most predict-
able from y. Thus for graphical purposes, even if the design
condition (3.1) is not satisfied, SIR still suggests interesting
directions for viewing the data.

As a sharp contrast to most nonparametric techniques that
require intensive computation, SIR is very simple to im-
plement. Moreover, the sampling property of SIR is easy
to understand, another advantage over other methods. Thus
it is possible to assess the effectiveness of SIR by using the
companion output eigenvalues at the principal component
analysis step (see Remark 5.1 in Section 5). These eigen-
values provide valuable information for assessing the num-
ber of components in the data (see Remark 5.2). Finally,
selection of the number of slices for SIR is less crucial than
selection of the smoothing parameter for typical nonpara-
metric regression problems. We further illustrate these points
by simulation in Section 6.

In view of these virtues, however, SIR is not intended
to replace other computer-intensive methods. Rather it can
be used as a simple tool to aid other methods; for instance,
it provides a good initial estimate for many methods based
on the forward regression viewpoint. Because of low com-
puting cost, one should find it easy to incorporate SIR into
most statistical packages.

Remark 1.1. All models are imperfect in some sense
and (1.1) should be interpreted as an approximation to real-
ity. However, there is a fundamental difference between
this and other statistical models: (1.1) takes the weakest
form for reflecting our hope that a low-dimensional pro-
jection of a high-dimensional regressor variable contains most
of the information that can be gathered from a sample of a
modest size. Equation (1.1) does not impose any structure
on how the projected regressor variable affects the output
variable. In addition, we may even vary K to reflect the
degree of the anticipated dimension reduction. At K = p,
(1.1) becomes a redundant assumption. By comparison, most
regression models assume K = 1, with additional structures

on f.

Remark 1.2. A philosophical point needs to be empha-
sized here: The estimation of the projection angles can be
a more important statistical issue than the estimation of the
structure of fitself. In fact, the structure of f is impossible
to identify unless we have other scientific evidence beyond
the data under study. One can obtain two different versions
of f to represent the same joint distribution of y and x [cf.
(2.1)]. Thus what we can estimate are at most statistical
quantities, such as the conditional mean or quantiles of y-
given x. On the other hand, during the early stages of data
analysis, when one does not have a fixed objective in mind,
the need for estimating such quantities is not as pressing as
that for finding ways to simplify the data. Our formulation
of estimating the e.d.r. directions is one way to address
such a need in data analysis. After finding a good e.d.r.
space, we can project data into this smaller space. We are
then in a better position to identify what should be pursued
further: model building, response surface estimation, clus-
ter analysis, heteroscedasticity analysis, variable selection,
or inspecting scatterplots (or spin-plots) for interesting fea-
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tures. This approach toward data analysis is different from
that in many other works. Projection pursuit regression
(Friedman and Stuetzle 1981), ACE and additive models
(Breiman and Friedman 1985; Stone 1986; Hastie and Tib-
shirani 1986), or partial splines (Chen 1988b; Cuzik 1987;
Engle, Granger, Rice, and Rice 1986; Heckman 1986;
Speckman 1987; Wahba 1986), for instance, seem to have
singled out the approximation of the conditional mean of
the output variable (or its transformation) as their primary
goal. But dimension reduction in statistics has a wider scope
than functional approximation. The concept of e.d.r. space
and the method of SIR aim at this general purpose of di-
mension reduction.

After dimension reduction, if we want to estimate the
response surface, for example, we can apply standard tech-
niques in nonparametric regression to the projected vari-
ables (e.g. Li 1987 and the references therein). In addition,
suitable conditional influence as in the Box—Cox transfor-
mation study (Hinkley and Runger 1984) may be valuable.
Needless to say, the door is open for further serious work.

2. A MODEL FOR DIMENSION REDUCTION

Equation (1.1) describes an ideal situation where one can
reduce the dimension of the explanatory variable from p to
a smaller number K without losing any information. An
equivalent version of (1.1) is: The conditional distribution
of y given x depends on x only through the K dimensional
variable (B,x, ..., Bgx). Thus conditional on B,x’s, y and
x are independent; the perfectly reduced variable, (8x, ...,
BkX), is seen to be as informative as the original x in pre-
dicting y.

Recall the terminology of e.d.r. direction and e.d.r. space
from Section 1. Observe that by changing f suitably, (1.1)
can be reparameterized by any set of X linearly independent
e.d.r. directions. Another interpretation is that conditioning
on (BX, ..., BxX) is equivalent to conditioning on any non-
degenerate affine transformation of this vector. Thus it is
the e.d.r. space B that can be identified; the individual vec-
tors B, ..., Bx are not themselves identifiable (unless fur-
ther structural conditions on f are imposed).

Let 2, be the covariance matrix of x. Later on, we shall
find it convenient to consider the standardized version of
X,z = 25 [x — E(x)]. We may rewrite (1.1) as

y=f(mz, ..., %z, €), 2.1

where 7, = BkE,",{z (k=1, ...,K). We shall call any vector
in the linear space generated by the 7,’s a standardized e.d.r.
direction.

We will discuss the relationship of our model to others
subsequently.

First of all, it is fair to say that one-component models
(K = 1) prevail in the literature; for instance, the gener-
alized linear model, the Box—Cox transformation model and
its generalization (Box and Cox 1964; Bickel and Doksum
1981; Carroll and Ruppert 1984) and others. Brillinger (1977,
1983) derived a surprising result about the robustness of
least squares estimation under a global misspecification of
the link function. Li and Duan (1989) generalized Brillin-
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ger’s result to a general class of maximum likelihood type
estimators.

Turning to the multicomponent model (K > 1), observe
that the conditional expectation E(y | x), the forward
regression surface, takes the form g(B;x, ..., Bgx). From
the forward regression viewpoint, after projecting x onto
any K-dimensional subspace (with a basis, say, by, ..., bg),
it is possible to estimate the conditional expectation E(y |
b;x’s) nonparametrically. The average conditional variance
E[var(y | byx’s)] is minimized when the projection space
coincides with the space of the e.d.r. directions. We are
led to a variant of the projection pursuit method studied in
Chen (in press), which estimates the e.d.r. space by glob-
ally searching for a best K-dimensional projection that min-
imizes a lack-of-fit measure based on the residual sum of
squares. Large-sample results were derived, but the method
appears to be highly computer-intensive because one has to
worry not only about how to do a global search efficiently
but also about how to do the multidimensional smoothing.

If the conditional expectation E(y | x) takes the additivity
form, g,(B;x) + --- + gx(Bgx), then one may use the pro-
jection pursuit regression algorithm (PPR) as described in
Friedman and Stuetzle (1981) to estimate the e.d.r. direc-
tions. Donoho and Johnstone (1989), Hall (1989), and Huber
(1985) add more insight to PPR.

Another possible forward regression route to attack this
problem is based on the observation that under (1.1), any
slope vector, the derivative of y with respect to x at any
point, falls within the e.d.r. space B. Thus if we can es-
timate the slope vectors well, we may apply a principal
component analysis to the estimated slope vectors to find
the e.d.r. directions. The main difficulty for this approach,
however, is the estimation of the derivatives for high
dimensional x.

Many recent works are related to data reduction. A short
and incomplete list includes the correspondence analysis
approach (e.g., van Rijckevorsel and de Leeuw 1988),
classification trees (e.g., Breiman, Friedman, Olshen, and
Stone 1984; Loh and Vanichsetakul 1988), ACE and ad-
ditive models (Breiman and Friedman 1985; Koyak 1987,
Stone 1986), and partial spline mode€ls (Chen 1988; Cuzick
1987; Engle et al. 1983; Heckman 1986; Speckman 1987;
Wahba 1986), and projection pursuit density estimation (e.g.,
Diaconis and Freedman 1984; Friedman 1987; Huber 1985).

We conclude this section by discussing the question of
how to evaluate the effectiveness of an estimated e.d.r. di-
rection. An obvious criterion is based on the squared Eu-
clidean distance between the estimated e.d.r. direction b
(normalized to have the unitary length) and the true e.d.r.
space B. This criterion, however, is not invariant under scale
change or affine transformation of x. We prefer an affine
invariant criterion,

(b2uB')
b3ub - BEuf’
the squared multiple correlation coefficient between the
projected variable bx and the ideally reduced variables 8;x,

..., BgX. For a collection.of K estimated directions b, ...,
by generating a linear subspace B, we use the squared trace

R*(b) = max

BEB

2.2)
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correlation, denoted by R*(B), as our criterion: the average
of the squared canonical correlation coefficients between
bx, ..., bgx and B;X, ..., Bgx (Hooper 1959). It is also
reasonable to replace 3,,, by the sample covariance matrix
in our definition of the criteria.

3. THE INVERSE REGRESSION CURVE

Consider the trajectory of the inverse regression curve
E(x | y) as y varies. The center of this curve is located at
E(E(x | y)) = E(x). In general, the centered inverse regres-
sion curve, E(x | y) — E(x) is a p-dimensional curve in
R?. We shall see that it lies on a K-dimensional subspace,
however, with the following condition on the design
distribution:

Condition 3.1.
tation E(bx | Bix, ..
is, for some constants ¢y, ¢y, ..
= Cy + C]le + .-+ CKﬁKX.

For any b in R?, the conditional expec-
., BgX) is linear in BX, ..., BxX; that
., ¢k, E(bX | BiX, ..., BxX)

This condition is satisfied when the distribution of x is
elliptically symmetric (e.g., the normal distribution). More
discussion of this condition is given in Remark 3.3. The
following theorem will be proved in the Appendix.

Theorem 3.1. Under the conditions (1.1) and (3.1), the
centered inverse regression curve E(X | y) — E(X) is con-
tained in the linear subspace spanned by B3 (k =1, ...,
K), where 2, denotes the covariance matrix of x.

Corollary 3.1. Assume that x has been standardized to
z. Then under (2.1) and (3.1), the standardized inverse
regression curve E(z | y) is contained in the linear space
generated by the standardized e.d.r. directions 7, ..., 7.

An important consequence of this corollary is that the
covariance matrix cov[E(z | )] is degenerate in any direc-
tion orthogonal to the 7,’s. We see, therefore, that the ei-
genvectors, m(k = 1, ..., K), associated with the largest
K eigenvalues of cov[E(z | y)] are the standardized e.d.r.
directions. Transforming back to the original scale,
nkE'l/z (k =1, ..., K) are in the e.d.r. space. This leads
to the SIR algorithm of the next section.

Remark 3.1. Conditional covariance cov(z | y) can also
reveal valuable clues for finding the standardized e.d.r. di-
rections. To see this, simply observe the identity

E[cov(z | y)] = cov z — cov[E(z | y)] =1 — cov[E(z | y)].

Therefore, after an eigenvalue decomposition of E[cov(z |
)], we may find the standardized e.d.r. directions from the
eigenvectors associated with the smallest K eigenvalues. The
estimation of E[cov(z | y)] is not difficult; see Remark 5.3.

Remark 3.2. Regression models are usually formed by
decomposing the joint distribution of y and x as A(y | X)k(x)
and modeling A(y | x). This is the forward view of regres-
sion. The inverse view of regression factorizes the joint
density as A(x | y)k(y) and models A(x | y). Important cases
of inverse formation include discriminant analysis (with lo-
gistic regression as the counterpart from the forward view).
SIR is itself meaningful from the inverse view of modeling.
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It is interesting to observe that we may consider y as a pa-
rameter with an empirical Bayes prior.

Remark 3.3. Condition (3.1) seems to impose a strin-
gent requirement on the distribution of x. One implication
is that, at the stage of data collection, unless the functional
form of the response surface is known, we had best design
the experiment so that the distribution of x will not blatantly
violate elliptic symmetry. For example, rotatable designs,
advocated by George Box (see, e.g., Box and Draper 1987)
in the response surface literature, deserve to be studied more
closely in the future. On the other hand, after data collec-
tion, it would help the analysis if closer examination of the
distribution of x can be made so that outliers can be re-
moved or clusters can be separated before analysis.

An interesting extension of Corollary 3.1 will be to quan-
tify how far away from the standardized e.d.r. space the
inverse regression curve E(z | y) is when (3.1) is mildly
violated. If the projection of E(z | y) on the orthogonal com-
plement of the standardized e.d.r. space is small, then the
directions picked up by the principal component analysis
on cov[E(z | y)] will still be close to the standardized e.d.r.
directions. The situation is similar to that in Brillinger (1977,
1983) where consistency of least squares in estimating f3,
for one-component models under (3.1) is proved. Further-
more, empirical evidence was reported indicating that his
result is not sensitive to violation of (3.1). A comprehen-
sive account of this robustness issue for the least squares
and other commonly used regression estimates is given in
Li and Duan (1989).

After the first version of our article was written, this de-
sign robustness issue was further addressed in three articles.
First, a bound to bias in estimation was obtained in Duan
and Li (in press) for K = 1. Moreover, Li (1989) argued
that for most directions b, we can expect the linearity in
(3.1) to hold approximately, borrowing a powerful result
from Diaconis and Freedman (1984) where they showed
that most low-dimension projections of a high-dimension
data cloud are close to being normal. Li (1989) also dem-
onstrated how SIR may find the directions that violate (3.1)
most seriously. Li (1990b) extended the discussion to a
framework for the uncertainty analysis of mathematical
models.

4. SLICED INVERSE REGRESSION

A scheme for sliced inverse regression operates on the
data (y;, x) (i = 1, ..., n), in the following way:

1. Standardize x by an affine transformation to get X; =

A

S (x, —X) (i = 1, ..., n), where 2, and X are the
sample covariance matrix and sample mean of X respec-
tively.

2. Divide range of y into H slices, I;, ..., Iy; let the
proportion of the y; that falls in slice 4 be p,; that is p, =
(1/n) 2%, 8,(y), where §,(y,) takes the values O or 1 de-
pending on whether y; falls into the Ath slice 7, or not.

3. Within each slice, compute the sample mean of the
X;’s, denoted by m, (h = 1, ..., H), so that iy, = (1/np,)
ZYiEIh ;.

4. Conduct a (weighted) principal component analysis
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for the data m, (h = 1, ..., H) in the following way: Form
the weighted covariance matrix V=31, Pny, Wy, then find
the eigenvalues and the eigenvectors for V.

5. Let the K largest eigenvectors (row vectors) be 7, (k
=1,...,K). Output B, = A2 2 k=1, ..., K).

Steps 2 and 3 produce a crude estimate of the standard-
ized inverse regression curve E(z | y). Although it is fea-
sible to use more sophisticated nonparametric regression
methods such as kernel, nearest neighbor, or smoothing
splines to yield a better estimate of the inverse regression
curve, we advocate only the method of slicing due to its
simplicity. Since we only need the main orientation (but
not any other detailed aspects) of the estimated curve, pos-
sible gains due to smoothing are not likely to be substantial.

The weighting adjustment for principal component anal-
ysis in Step 4 takes care of the case where there may be
unequal sample sizes in different slices. The first X com-
ponents locate the most important subspace to track the
standardized inverse regression curve E(z | y). Finally, Step
5 retransforms the scale back to the original one. Thus S,’s
can be used as estimates of the e.d.r. directions and the
e.d.r. space B is estimated by B, the space generated by
the B.’s.

A few remarks about the actual implementation are in
order.

Remark 4.1. 1t is not necessary to transform each in-
dividual x; to X;. All we need is to transform the slice means
before conducting the principal component analysis to save
computing time. Let X be =/, p,(X, — X)(X, — X)’, where
X, denotes the sample mean of the x;’s in the Ath slice. Then
the B,’s are just the eigenvectors for the eigenvalue decom-
position of 2., with respect to 2.,,. Using the terminology
of MANOVA (e.g., Mardia, Kent, and Bibby 1979, chap.
12), 2, describes the between-slice variation.

Remark 4.2. The range for each slice may be set to
have equal length; but in section 6, we prefer to allow it
to vary so that the number of observations in each slice can
be as close to each other as possible.

Remark 4.3. The choice of the number of slices may
affect the asymptotic variance of the output estimate. How-
ever, the difference is not significant for practical sample
sizes in our simulation study. This issue here is less critical
than the choice of a smoothing parameter in nonparamet-
ric regression. Theoretically an inappropriate choice of
smoothing parameter in nonparametric regression or den-
sity estimation may lead to a slower rate of convergence,
while for our case we can still have root n consistency no
matter how H is chosen; see Remark 5.3 in Section 5. For
a comprehensive treatment of adaptive choice of smoothing
parameter in nonparametric regression, see Li (1987), and
Hirdle, Hall, and Marron (1988).

Remark 4.4. When standardizing X, it is not necessary
to base the affine transformation on the sample mean and
sample covariance matrix. Some robust versions of them
may be preferable (see Donoho, Johnstone, Rousseeuw, and
Stahel 1985; Fill and Johnstone 1984; and Li and Chen 1985).
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At least we should downweight or cut out those influential
design points. But this issue is probably less crucial and is
relatively easy to handle because we are dealing with the
design points that are under our control (even in the ob-
servational study, we may screen out some bad design points;
if the percentage of the remaining points is high enough we
can still have a good analysis). Note that the efficiency of
the affine transformation is not the main concern because
we need only a consistent estimate to make SIR work.

Remark 4.5. 1f the standardized inverse regression curve
falls within a proper subspace of the standardized e.d.r.
space, then SIR cannot recover all e.d.r. directions. For
instance, if y = g(B,x) + € for some symmetric function
g, and B,x is also symmetric about 0, then E(x | ¥) equals
0, and B3, is a poor estimate of 3,. For handling such cases,
one approach is to explore higher conditional moments of
x given y. For instance, if x is normal, then for any direc-
tion bx orthogonal to the B,x’s, we see that var(bx | ) re-
mains invariant as y changes. In particular, for standardized
x, the eigenvectors of cov(x | y € I,) with eigenvalues dif-
ferent from 1 are in the e.d.r. space. Thus if an eigenvalue
decomposition on the sample covariance of the X;’s, de-
noted as COV,, for each slice % is conducted, then we may
combine those eigenvectors with eigenvalues significantly
different from 1 from each slice in a suitable way to esti-
mate f3,’s. Details on ways of combination are under in-
vestigation. It is not always necessary to conduct the ei-
genvalue decomposition separately for each slice, however.
For instance, one may treat it as an approximation problem
of fitting each COV,, — [ separately by a nonnegative def-
inite matrix of rank K with the constraint that the fitted
matrices have a common range. Another second moment
method and a method based on the notion of principal Hes-
sian directions were suggested in Li (1989, 1990a). More
recently, the author also learned that Cook and Weisberg
have independently obtained some good estimates based on
the second moments.

5. SAMPLING PROPERTIES

In this section we present a brief argument to show how
the output of SIR provides root n consistent estimates for
the e.d.r. directions.

Let p, = Pr{y € I,} and m, = E(z | y € I,), where z
stands for the standardized x, as defined in Section 2. El-
ementary probability theory shows that 7, converges to m,,
at rate n~ /2. Let V be the matrix 2, p,m,m,,. Clearly the
weighted covariance V in Step (4) of SIR converges to V
at the root n rate. Consequently, the eigenvectors of V, 7,
(k =1, ..., K), converge to the corresponding eigenvec-
tors for V at the root n rate. Now we use Corollary 3.1 and
the simple identity m,, = E[E(z | y) | y € I,] to see that the
first K eigenvectors of V fall in the standardized e.d.r. space.
Since 37!/? converges to 35/%, we see that each S, con-
verges to an e.d.r. direction at rate root n.

The case where the range of each slice varies in order to
ensure an even distribution of observations is related to the
following choice of intervals:

I, = (F;'((h = D/H), F;'(h/H),
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where F,(°) is the cdf of y. The root n consistency result
still holds.

Remark 5.1. 1t is possible to establish the asymptotic
normality of the fw’k’s and to calculate the asymptotic co-
variance matrices using the delta method as in Mallows
(1961) or Tyler (1981). In the Appendix we show how to
approximate the expectation of R*(B), the squared trace cor-
relation between B,x’s and B8,x’s (see the last paragraph of
section 2). For the normal x, we have the following simple
approximation:

K
R p—K 1 1 > (1)
E[R’B)]=1-——|-1+=> —|+0ol-), 5.1
[RB)] . ( ; X -). 6D
where A, is the kth eigenvalue of V. A crude estimate of
this quantity is given by substituting the kth largest eigen-
value of V for A,.

Remark 5.2. To be really successful in picking up all
K dimensions for reduction, the inverse regression curve
cannot be too straight. In other words, the first K eigen-
values for V must be significantly different from zero com-
pared to the sampling error. This can be checked by the
companion output eigenvalues of V in Step (4) of the SIR.
The asymptotic distribution of the average of the smallest
p — K eigenvalues, denoted by A ,,, for V can be derived
based on perturbation theory for finite-dimensional spaces
(Kato 1976, chapter 2). For normal x, we have the follow-
ing result.

Theorem 5.1. If x is normally distributed, then n(p —
K)A(,—, follows a x* distribution with (p — K)(H — K —
1) df asymptotically..

We may use this result to give a conservative assessment
of the number of components in the model. Thus if the
rescaled A, is larger than the corresponding x* value (say
the 95th percentile), then we may infer that there are at
least k + 1 (significant) components in the model. For other
elliptically symmetric distributions, the result is more com-
plicated. Although it is possible to estimate the asymptotic
distribution using some version of the bootstrap method, we
feel it is good enough to use the normal case result as a
guideline to keep our procedure as simple as possible. An
outline for the proof of the asymptotic result discussed here
is given in the Appendix. A referee pointed out the simi-
larity between this result and the result of a likelihood ratio
test in MANOVA (Mardia et al. 1979, p. 342; further con-
nection between SIR and sec. 12.5.4 of that reference can
also be drawn). We remind the reader, however, that the
fundamental assumption about the error distribution in
MANOVA is not satisfied for our case. The conditional
distribution of x given y is not normal, even if x is normal
unconditionally. Furthermore, the conditional variance of x
given y € [, depends on k. Hence one has to be very careful
if linking of SIR with MANOVA is desired.

Remark 5.3. Can SIR still yield reasonable estimates if
the number of slices increases too fast and the number of
observations in each slice is too small for 77, to consistently
estimate m,? Remark 3.1 offers an answer. First, we see
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that the following is one way to estimate E[cov(z | y)]:

(a) Introduce a large number of slices for partitioning the
range of y.

(b) Within each slice, form the sample covariance of X,’s
that fall into that slice.

(c) Form an average of the estimated conditional co-
variances of (b).

Intuitively, in order to get rid of the bias for estimating the
conditional variance cov(z | y) for each y in (b), we hope
that the range of each slice will converge to 0, so that only
local points will contribute to the estimation. But when the
number of slices is too large, the sampling variance in each
estimate of cov(z | y) may not diminish, even for large n.
Fortunately, the averaging process of (c) will stabilize the
final estimate by the law of large numbers. As a matter of
fact, even if the slice number is n/2, so that each slice
contains only two observations, the resulting estimate will
still be root n consistent.

The interesting connection of this estimate of E[cov(z |
y)] to SIR is that this estimate is proportional to I — V
because of the sample version of the identity given in Re-
mark 3.1. Because of this conjugate relationship, a prin-
cipal component analysis on the above estimate of E[cov(z
| )] for the smallest K components is equivalent to a prin-
cipal component analysis on V for the largest K compo-
nents. This explains why a large number of slices may still
work, bolstering our earlier claim that the selection of H
is not as crucial as the choice of a smoothing parameter
in most nonparametric regression or density estimation
problems.

Remark 5.4. It is interesting to study the asymptotic be-
havior of the SIR estimate when both the sample size and
the dimension p of x increase simultaneously, but the num-
ber of components K and the number of slices H are kept
fixed. One can see that a sufficient condition for the 7, to
converge to 7, (in the sense that the angle between the two
converges to 0) in probability is that the maximum singular
value for V — V converges to O in probability. When the
eigenvalues of V are bounded away from O and infinity as
n increases, the above sufficient condition is implied by the
condition that p/n converges to O in such a way that the
difference between the maximum eigenvalue of the sample
covariance 2, and that of 3, converges to 0. This shows
the potential of SIR for handling high-dimensional data.
Asymptotic settings that allow p to increase are more ap-
propriate in reflecting the situations where dimension-re-
duction techniques are called for. Diaconis and Freedman
(1984) illustrated this well. See also Portnoy (1985) and
references therein for the context of robust regression.

6. SIMULATION RESULTS

To demonstrate how SIR works, we have conducted sim-
ulation studies, and some of the results are reported here.
The first subsection describes the behavior of the estimates;
the second subsection discusses the eigenvalues and their
role in estimation; and the third subsection demonstrates the
graphical aspect of the e.d.r. direction estimation.
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6.1. Behavior of the SIR estimates
First we use the linear model

y=x+x+x3+x,+0xs+ € 6.1)
to generate n = 100 data points. The dimension p equals
5 and the x;’s and € are independent, with the standard nor-
mal distribution. There is only one component in this model,
K =1, and any vector proportional to 8 = (1, 1, 1, 1, 0)
is an e.d.r. direction. Table 1 gives the mean and the stan-
dard deviation (in parentheses) of B8, of SIR for H = 5, 10,
and 20, after 100 replicate§. Here we have to standardize
the length and the sign of B,.

As we see from this table, the estimates are very good.
The means are all quite close to the normalized target (.5,
.5, .5, .5, 0). On the other hand, the least squares estimate
for each coordinate of 3, based on the correct linear model,
has the standard deviation 1/\/n = .1. Since the target vec-
tor is half of B, the value .05 can be used as a benchmark
for comparing the standard deviations of the SIR estimates.
We also see that the performance of SIR is not sensitive to
the number of slices.

Turning to the multicomponent case, we shall concen-
trate on the case K = 2. Two models are studied:

y=xx;+x,+ 1)+ o€ 6.2)
and
il + (6.3)
= g-E€. .
YT 05+ + 15y
In addition to €, x;, x,, we also generate x;, ..., X,, all

variables being independent and following the standard nor-
mal distribution. We take p = 10 together with o = .5 and
o = 1. The sample size is set at n = 400. The true e.d.r.
directions are the vectors in the plane generated by (1, O,
..., 0)and (0, 1, O, ..., 0). The first two components of
SIR will be used as estimates of e.d.r. directions. Recall
the performance measure R*(-) from Section 2. With the
number of slices H set at 5, 10, and 20 respectively, Tables
2and 3 report the mean and the standard deviation of R*(8,)
and R*(B,) after 100 replicates.

For both models, despite the change in the noise level,
the first component is very close to the e.d.r. space as the
R? values hover in the neighborhood of 90%. The second
component is more sensitive to the noise level. But even
for the high noise level case, the sample correlation be-
tween the projected one-dimensional variable 8,x and the
perfectly reduced data, the square root of R?, is still strong
(above .7) on the average. Again, the number of slices has
only minor effects on the results. It is interesting to observe
that SIR is doing better for the rational function model (6.3)
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Table 2. Mean and Standard Deviation of R*(8,) and R?(8.) for the
Quadratic Model (6.2), p = 10, n = 400

o= 05 o=1

H R?(B,) R(B2) R?(B,) R2(B.)

5 91 .75 .88 52
(.05) (.15) (.07) (.21)

10 92 .80 .89 .55
(.04) (.13) (.08) (.24)

20 .93 77 .88 49
(.04) (.15) (.08) (.26)

See Table 1 note.

than for the quadratic model (6.2), despite the fact that the
strength of the signal as measured by the standard deviation
of E(y | x) is weaker for the rational function model [about
.8 for (6.3) vs. about 2.0 for (6.2)]. The key to the success
of SIR hinges not on the signal-to-noise ratio, but on the
eigenvalues of cov(E(z | y))..

We do not report the average onr RB), pecause it is very
close to the average of 1/ 2[R*(B) + R*(By)].

6.2 Eigenvalues

How many components are there in the data? Perhaps
this question is too ambitious to ask. But the companion
output eigenvalues at step (4) of SIR do provide us with
valuable information for a more practical question: Is an
estimated component real or spurious?

Table 4 gives the empirical quantiles and the mean of
Ay A, and A, for the same 100 replicates used in ob-
taining the columns of H = 10 in Tables 2 and 3 (the con-
clusions are similar for other H’s). For Ay, the numbers
are close to the rescaled x> values, as anticipated by Theo-
rem 5.1. Thus guided by x2, we will not often falsely con-
clude that the third component is real (or mistakenly claim
that there are more than two components in the data).

Turning to A, we expect the numbers to be larger than
those given by using the rescaled x° that falsely assumes
only one component in the model. For the rational function
model with o = .5, this is clearly so, as we see that the
1% quantile of Ay, is close to the 99% quantile of the re-
scaled x*. Thus in this case we correctly infer that there
are at least 2 components in the model in each of the 100
replicates. As confirmed by the corresponding R*(83,) re-
ported in Table 3, a high value of Ay, leads to good per-
formance of 3, as an e.d.r. direction. On the other hand,
the distribution of A, for the quadratic model with o = 1

Table 3. Mean and Standard Deviation of R%(,) and R?(B.) for the

Table 1. Mean and Standard Deviation* of B; = (Bys, ..., Bis) for Rational Function Model (6.3), p = 10, n = 400
the linear model (6.1), n = 100; the Target is (.5, .5, .5, .5, 0)
o=05 o=1

H Bir Biz Bis Bia Bis H R*(8:) R*(B2) R*(B.) R?(B2)
.505 498 494 .488 .002 5 .96 .83 .89 .51
(.052) (.049) (.056) (.056) (.066) (.02) (.08) (.06) (.23)

10 .502 .500 492 491 .001 10 .96 .88 .90 .56
(.046) (.045) (.055) (.049) (.060) (.02) (.06) (.06) (.23)

20 .500 502 497 487 -.003 20 .96 .89 .90 .53
(.048) (.046) (.053) (.054) (.060) (.02) (.06) (.06) (.24)

*Numbers in parentheses represent standard deviations.

See Table 1 note.
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Table 4. Sample Quantiles and Means of A, Aw, and Aqq for the 100 Replicates Used in Obtaining the Columns
of H= 10 in Tables 2 and 3

Model 1% 5% 10% 25% 50% 75% 90% 95% 99% Mean
10/{(9)‘ quadratic o = 1 10 12 13 14 .16 18 .20 .20 24 .16
quadratic o = .5 .09 12 13 15 .16 18 .20 22 27 A7
rational function o = 1 .09 11 13 14 .16 19 .20 .21 .27 .16
rational function o = .5 13 RK] 14 .16 18 .20 .23 .24 27 18
1
— x5 A1 12 13 15 A7 .20 .22 .23 .26 175
320
10)((9, quadratic o =1 7 .18 19 .22 .24 27 .29 .32 .33 24
quadratic o = .5 19 22 24 27 .30 .33 .35 37 .43 .30
rational function o = 1 .16 .18 .20 .22 .24 27 .30 .32 .35 .25
rational function o = .5 .28 .29 .30 .34 .36 .40 .43 .46 .53 37
— x% 13 15 .16 .18 .20 22 .24 .26 .29 .20
360
10)'\(,0) quadratic o = 1 .28 .33 .34 .38 42 47 .53 .55 .58 .43
quadratic o = .5 .39 43 .45 .49 .53 .57 .64 .66 .70 .54
rational function o = 1 .34 .36 .38 .40 .43 .49 .51 .55 .61 44
rational function o = .5 .58 .63 .65 .69 74 .79 .82 .85 .90 74
9
— X% 15 A7 18 .20 22 .25 27 .28 .31 225
400

shows a substantial overlap with the rescaled x*. This is
reflected in the relatively lower average and higher standard
deviation of R*(3,) in Table 2. But a positive point is that
by comparing A, with the rescaled x°, we realize that our
data do not strongly support the claim that the estimated
second component is real.

Finally, A, is well above the associated x?, assuring the
high average and the low standard deviation of Rz(ﬁl) in all
cases.

6.3. Graphics

We shall demonstrate how effective the estimated e.d.r.
directions for (6.3) can be when used to view the data via
spinning plots. For comparison, we also present the best
view of the data, y against x,, x,. The best view is only
possible in simulation study. First, Figure 1 shows the pic-
ture of the response surface in (6.3).

The rest of the study is carried out using XLISP-STAT
(Tierney 1989). We set p = 10 and o = .5 to generate n
= 400 cases according to (6.3). The best view of the data
is given in Figure 2, a—d, which shows four different angles
from which to view the plot as we rotate it along the y axis
every 45°. We then run SIR on the generated data with H
= 5 and 30 and plot y against B.x, B.x using the spin-plot
command in XLISP-STAT (Figures 3 and 4). Evidently,
SIR yields a very sharp view of the data. We also see that
the choice of H has very little visual effect, confirming our
theoretical argument given in Remark 4.3 and Remark 5.3.

7. DESCRIPTIVE STATISTICS AND SIR

We conclude this article by arguing that besides offering
e.d.r. estimates, SIR gives useful descriptive statistics for
cases in observational studies where we may think of x as
the dependent variable and y as the independent variable.

According to the interpretation following (2.1), the for-
ward view of data reduction aims at seeking a K-dimen-
sional variable (derivable from x linearly) that predicts y
most effectively. Now, reversing the role of y and x, let us

first ask which one-dimensional variable (derivable from x
linearly) is most predictable from y. This question was asked
and answered by Hotelling (1935), with the restriction that
the prediction rules must be linear. Hotelling’s solution, for
a multivariate y, leads to the analysis of canonical correlation.

Without the linearity constraint on the prediction rules,
for a variable bx, the best prediction (under the squared
error loss) is given by E(bx | ), a nonlinear function of y
in general. Thus the most predictable variable is the one
which maximizes

var(E[bx | y) _ (bSO)covIE® | y)I(b2)'
- [DX4k ’

where z is the standardized x as defined before. Clearly,

the solution is given by n,E;x‘/ 2, where 7, denotes the larg-

var(bx)

Figure 1. Response Surface of (6.3).
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(a)

(b)

(c)

(d)

Figure 2. Best View of Data Generated From (6.3) With o = .5, p = 10.

est eigenvector of cov[E(z | y)]. This is what the first com-
ponent of SIR, ﬁl, attempts to estimate.

Generalizing the above argument, the projection direc-
tion yielding the variable that is most predictable from y,
subject to being uncorrelated with the first most predictable
variable, is a direction estimated by B,. Similar intepreta-
tion extends to the other S;.

Since the appearance of the first version of this article,
four related works have been written. Duan and Li (in press)
studied SIR for the case where K = 1 in more detail. They
generalized the implementation of SIR by allowing a gen-
eral weighting scheme for conducting the principal com-
ponent analysis. Li (1989) examined SIR from a different
angle. A projection pursuit approach was taken there, based
on the notion of dependent variable transformation to pro-
vide a projection index. It brought out a nice connection
with other works related to transformations (e.g., corre-
spondence analysis, ACE, and the dummy variable ap-
proach to multivariate analysis by the Gifi school) Li (1990a)
proposed a new method for handling the case where the
regression function may be symmetric. Li (1990b) applied
SIR to uncertainty analysis of mathematical models or com-
puter models. SIR was used to visualize and simplify the
models.

APPENDIX

A.l. Proof of Theorem 3.1. Without loss of generality, as-
sume that E(x) = 0. Consider any vector b in the orthogonal com-
plement of the space spanned by B2.(k = 1, ..., K); that is,
Bib' = 0. We need to show that bE(x | y) = 0 with probability
1. Equation (1.1) implies

bE(x | y) = E[E(bx | BiX’s, y) | y] = E[E(bX | Bix’s) | y].

Hence it suffices to show that E(bx | B;X’s) = 0; or equivalently,
E[(E(bx | B:x’s))’] = 0. By conditioning, the left term can be
written as E[E(bx | Bix’s)x'b’], which equals E[(c, + =f,
aBx)x'b'] = =K, ciBi2b’ = 0. The proof of Therem 3.1 is
now complete.

A.2. Derivation of formula (5.1) for E[R*B)]. Due to the
affine invariance, we may assume that X has mean O and covari-
ance 3,, = I. The squared trace correlation R*(B) reduces to

K"trP,Pl =1-K'tr (P, —Pl)Pl(ﬁl - Py,

where P; and P, are symmetric projection matrices associated with
the e.d.r. space B and the estimated space B respectively. From
steps 4 and 5 of SIR, P, is related to P, = Z&_, 7, a projection
matrix:

Py =337 3P 3",

where the superscript + denotes the Moore—Penrose generalized
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(a)

(b)

(c)

(d)

Figure 3. SIR’s View of the Same Data as in Figure 2, H = 5.

inverse of a matrix. Furthermore, we need the following approx-

imation which will be proved later:

Pi=P +P,(V-V)WV"+ V'V -VP,+0,n"'?, (A.1)
where P, = I — P, and V is defined by SI, pumymj, with m;, =
E(x I y (S Ih)' .

Now, approximate 2. by I + A, where A = n™' 37_; xx/ —
I. Take A to be the p X H matrix (ﬁ{/zml, e ﬁ}/zmy), and verify
that V = AJA’, where J denotes the projection matrix I — (p1/?,
. BB, L., pi®'. Then we can derive

R _ 1
(Pl - Pl)Pl = P2%11A1V+ - PzAPl + Op<'—>,
Vn

where the n X H matrix, €,, equals (py/*(X, — my)), and X, is
defined in Remark 4.1.
It remains to calculate

E[R*B)1=1—-K YE, + E, — 2E3) + o(n™ "),
where
E, = E[tr(P,$JA'V')(...)'] = E(rV*E|P,%))

E, = E[tr(P,AP,)( ...)'] = n"'E(Pxx'Pxx'P,)
= n"'E[(X'P,;x)(X'P;X)]
E, = tr E[(P,%,JA'V")(P,AP))'].

The normality assumption on x implies that conditional on p(k
=1, ..., K), the columns of P,%, are independent normal, with

mean 0 and covariance n~'P,, leading to E(% |P,%;) = (p — K)n™'I.
Since V converges to V, we obtain

K

E;=(p—-Kn' D Act + o™,

k=1
The second term E, equals K(p — K)n™', because of the inde-
pendence between P;x and P,X.

Write E; as tr{E(P;AP,8,JA'V')] = tr[E(P,x,x|P,A)JA'V*']. The

term inside the parentheses is a p by H matrix with the Ath column
equal to

”ylﬁ # ' Pixxi P, Z S(y)Xi,
i=1
where 8, is defined in step 2 of SIR. Replace p;'/* by p;'/? in
the above expression and then take the expectation. The result
turns out to be n™'/*p}/*(p — K)P,m,, because of the independence
between P,x; and y,. Therefore we have

E;=n"!(p — K) tr(AJA'V™) + lower order term
=n"!(p — K)K + lower order term.
Putting E,, E,, E, together, we have derived (5.1).
Proof of (A.1). The quickest way to derive this expansion is
to use Lemma 4.1 in Tyler (1981). Instead of expanding P, about

P,, we first expand P, = I — P, about P,. One advantage is that
there is only one eigenvalue associated with P,VP,, which is 0;
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(a)

(b)

(c)

(d)

Figure 4 (a)—(d). Best View of the Same Data as in Figure 2, H = 30.

so the Taylor expansion formula is simpler. This leads to
By =P, = [PV = V)V + V'(V = V)P;] + 0,(n”'7%),
implying (A.1).
A.3. Asymptotic expansion for X(,,_,Q. The following lemma
is the key to our asymptotic expansion.
Lemma A.1. Consider the expansion
T(w) =T + oT® + 'T® + o(«?),

where T(w), T, T?, T® are symmetric matrices. Suppose that T
is nonnegative definite with rank K. Then the average of the smallest
p — K eigenvalues of T(w), A(w), has the expansion

1
AMw) = —— [wA? + &®AP ] + o(?),
p—K

where AV = tr TVIL, A® = ¢[T@I — TOT*T™I), and 11 is the
symmetric projection matrix of rank p — K such that [IT = TII
= 0.

This lemma is a simplified version of a result in the pertur-
bation theory for finite dimensional spaces (see chap. 2 of Kato
1976, p. 79, eq. (2.33)). To use this lemma, obtain, after a
straightforward asymptotic expansion, that

V—V=[AJE +A%) + (8 + 6,A)JA']
+ [(8, + G,A)(E, + A'S,) + AJA'E %,
+ €381AJA'] + 0,(1/n),

where €, = 32> — I. Thus we may substitute V for T, n™'/2 for

o, V for T(w), n'/* times the first bracketed term for 7", n times
the second bracketed term for 7, and II by P,.
Straightforward computation leads to

oA =TV PP, =t P,T" P, =0,
@A ® = tr Py8,0%1P,,

where Q = J — JA'V*AJ, a projection matrix with trace H — K
— 1. Based on a conditional probability argument similar to that
used in deriving E, in (A.2), we can show that n - tr(P,%,0%P,)
follows a X2 distribution with (p — K)(H — K — 1) degrees of
freedom. This completes the proof. Note that the normality as-
sumption on x is not necessary if the conditional covariance of
P,x given y € I, does not depend on & because X, is asymptoti-
cally normal by the central limit theorem.

[Received July 1988. Revised March 1990.]

REFERENCES

Bickel, P. J., and Doksum, K. A. (1981), “An Analysis of Transfor-
mations Revisited,” Journal of the American Statistical Association,
76, 296-311.

Breiman, L., and Friedman, J. (1985), “Estimating Optimal Transfor-
mations for Multiple Regression and Correlation,” Journal of the
American Statistical Association 80, 580-597.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984), Classi-
fication and Regression Trees. Belmont, CA: Wadsworth.



Li: Sliced Inverse Regression

Brillinger, D. R. (1977), “The Identification of a Particular Nonlinear
Time Series System,” Biometrika, 64, 509-515.

Brillinger, D. R. (1983), “A Generalized Linear Model with ‘Gaussian’
Regressor Variables.” In A Festschrift for Erick L. Lehmann, Belmont,
CA: Wadsworth, pp. 97-114.

Box, G., and Cox, D. R. (1964), “An Analysis of Transformations,”
Journal of the Royal Statistical Society, Ser. B, 26, 211-252.

Box, G., and Draper, IV. (1987), Empirical Model-Building and Re-
sponse Surfaces, New York: John Wiley.

Carr, D. B., Littlefield, R. J., Nicholson, W. L., and Littlefield, J. S.
(1987), “Scatterplot Matrix Techniques for Large N,” Journal of the
American Statistical Association, 82, 424—437.

Carroll, R., and Ruppert, D. (1984), “Power Transformations When Fit-
ting Theoretical Models to Data,” Journal of the American Statistical
Association, 79, 321-328.

Chen, H. (1988), “Convergence Rates for Parametric Components in a
Partly Linear Model.” The Annals of Statistics, 16, 136—146.

(in press), “Rates of Convergence for Projection Pursuit Regres-
sion,” The Annals of Statistics.

Cleveland, W. S. (1987), “Research in Statistical Graphics,” Journal of
the American Statistical Association 82, 419-423.

Cuzik, J. (1987), “Semiparametric Additive Regression,” unpublished
manuscript.

Diaconis, P., and Freedman, D. (1984), “Asymptotics of Graphical Pro-
jection Pursuit,” The Annals of Statistics, 12, 793-815.

Donoho, D., Johnstone, I., Rousseeuw, P., and Stahel, W. (1985), “Dis-
cussion of On Projection Pursuit,” The Annals of Statistics, 13 496—
499,

Donoho, D., and Johnstone, I. (1989), “Projection-Based Smoothing,
and a Duality With Kernel Methods,” The Annals of Statistics 17, 58—
106.

Duan, N., and Li, K. C. (in press), “Slicing Regression: a Link-Free
Regression Method,” The Annals of Statistics.

Engle, R. F., Granger, C. W. I, Rice, J., and Weiss, A. (1986), “Semi-
parametric Estimates of the Relation Between Weather and Electricity
Sales,” Journal of the American Statistical Association, 81, 310-320.

Eubank, R. L. (1988), Spline Smoothing and Nonparametric Regression,
New York: Marcel Dekker.

Fill, J. A., and Johnstone, I. (1984), “On Projection Pursuit Measures
of Multivariate Location and Dispersion,” The Annals of Statistics, 12,
127-141.

Friedman, J. (1987), “Exploratory Projection Pursuit,” Journal of the
American Statistical Association, 82, 249-266.

Friedman, J., and Stuetzle, W. (1981), “Projection Pursuit Regression,”
Journal of the American Statistical Association, 76, 817-823.

Hirdle, W., Hall, P., and Marron, S. (1988), “How Far Are Automat-
ically Chosen Regression Smoothing Parameters From Their Opti-
mum,” Journal of the American Statistical Association, 83, 86—101.

Hall, P. (1989), “On Projection Pursuit Regression,” The Annals of Sta-
tistics 17, 573—-588.

Hastie, T., and Tibshirani, R. (1986), “Generalized Additive Models,”
Statistical Science, 1, 297-318.

Heckman, N. (1986), “Spline Smoothing in Partly Linear Models,” Jour-
nal of the Royal Statistical Society Ser. B, 48, 244-248.

Hinkley, D. V., and Runger, G. (1984), “The Analysis of Transformed

327

Data,” with discussion, Journal of the American Statistical Associa-
tion, 79, 302-320.

Hooper, J. (1959), “Simultaneous Equations and Canonical Correlation
Theory,” Econometrica, 27, 245-256.

Hotelling, H. (1935), “The Most Predictable Criterion,” Journal of Ed-
ucational Psychology, 139-142.

Huber, P. (1985), “Projection Pursuit,” with discussion, The Annals of
Statistics, 13, 435-526.

Huber, P. (1987), “Experiences With Three-Dimensional Scatterplots,”
Journal of the American Statistical Association, 82, 448—454.

Kato, T. (1976), Perturbation Theory for Linear Operators (2nd ed.),
Berlin: Springer-Verlag.

Koyak, R. (1987), “On Measuring Internal Dependence in a Set of Ran-
dom Variables,” The Annals of Statistics, 15, 1215-1228.

Li, G., and Chen, Z. (1985), “Projection Pursuit Approach to Robust
Dispersion Matrices and Principal Components: Primary Theory and
Monte Carlo.” Journal of the American Statistical Association, 80, 759—
766.

Li, K. C. (1987), “Asymptotic Optimality for C,, C,, Cross-Validation
and Generalized Cross-Validation: Discrete Index Set,” The Annals of
Statistics, 15, 958-975.

(1989), “Data Visualization With SIR: a Transformation Based

Projection Pursuit Method,” UCLA statistical series 24.

(1990a), “On Principal Hessian Directions for Data Visualization

and Dimension Reduction: Another Application of Stein’s Lemma,”

UCLA technical report, Dept. of Mathematics.

(1990b), “Uncertainty Analysis for Mathematical Models With
SIR,” UCLA technical report, Dept. of Mathematics.

Li, K. C., and Duan, N. (1989), “Regression Analysis Under Link Vi-
olation,” The Annals of Statistics, 17, 1009—1052.

Loh, W. Y., and Vanichsetakul, N. (1988), “Tree-Structured Classifi-
cation via Generalized Discriminant Analysis,” Journal of the Amer-
ican Statistical Association 83, 715-728.

Mallows, C. L. (1961), “Latent Vectors of Random Symmetric Matri-
ces,” Biometrika, 48, 133—149.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Anal-
ysis. New York: Academic Press.

Portnoy, S. (1985), “Asymptotic Behavior of M-Estimators of p Regres-
sion Parameters When p*/n is Large II: Normal Approximation,” The
Annals of Statistics, 13, 1403—1417.

Speckman, P. (1987), “Kernel Smoothing in Partial Linear Models,” un-
published manuscript.

Stone, C. (1986), “The Dimensionality Reduction Principle for Gener-
alized Additive Models,” The Annals of Statistics, 13, 689-705.

Tierney, L. (1989), “XLISP.STAT: A Statistical Environment Based on
the XLISP Language,” (Beta Test Version 2.0). School of Statistics,
University of Minnesota.

Tyler, D. (1981), “Asymptotic Inference for Eigenvectors,” The Annals
of Statistics, 9, 725-736.

van Rijckevorsel, L. A., and de Leeuw, J. (1988), Component and Cor-
respondence Analysis, New York: John Wiley.

Wahba, G. (1986), “Partial and Interaction Splines for Semiparametric
Estimation of Functions of Several Variables,” in Computer Science
and Statistics: Proceedings of the 18-th Symposium on the Interface,
Washington, D.C., pp. 75-80.




