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Sliced Inverse Regression for Dimension Reduction 
KER-CHAU LI* 

Modern advances in computing power have greatly widened scientists' scope in gathering and investigating information from 
many variables, information which might have been ignored in the past. Yet to effectively scan a large pool of variables is not 
an easy task, although our ability to interact with data has been much enhanced by recent innovations in dynamic graphics. In 
this article, we propose a novel data-analytic tool, sliced inverse regression (SIR), for reducing the dimension of the input variable 
x without going through any parametric or nonparametric model-fitting process. This method explores the simplicity of the 
inverse view of regression; that is, instead of regressing the univariate output variable y against the multivariate x, we regress 
x against y. Forward regression and inverse regression are connected by a theorem that motivates this method. The theoretical 
properties of SIR are investigated under a model of the form, y = f(P,x, . . ., P,x, E ) ,  where the Pk's are the unknown row 
vectors. This model looks like a nonlinear regression, except for the crucial difference that the functional form off is completely 
unknown. For effectively reducing the dimension, we need only to estimate the space [effective dimension reduction (e.d.r.) 
space] generated by the Pk's. This makes our goal different from the usual one in regression analysis, the estimation of all the 
regression coefficients. In fact, the P,'s themselves are not identifiable without a specific structural form on f. Our main theorem 
shows that under a suitable condition, if the distribution of x has been standardized to have the zero mean and the identity 
covariance, the inverse regression curve, E(x I y), will fall into the e.d.r. space. Hence a principal component analysis on the 
covariance matrix for the estimated inverse regression curve can be conducted to locate its main orientation, yielding our estimates 
for e.d.r. directions. Furthermore, we use a simple step function to estimate the inverse regression curve. No complicated 
smoothing is needed. SIR can be easily implemented on personal computers. By simulation, we demonstrate how SIR can 
effectively reduce the dimension of the input variable from, say, 10 to K = 2 for a data set with 400 observations. The spin- 
plot of y against the two projected variables obtained by SIR is found to mimic the spin-plot of y against the true directions 
very well. A chi-squared statistic is proposed to address the issue of whether or not a direction found by SIR is spurious. 

KEY WORDS: Dynamic graphics; Principal component analysis; Projection pursuit. 

I. INTRODUCTION ing techniques are available (see Eubank 1988 for a com- 

Regression analysis is a popular way of studying the re- 
prehensive account). 

lationship between a response variable y and its explanatory 
As the dimension of x gets higher, however, the total 

variable x, a p-dimensional column vector. Quite often, a 
number of observations needed for local smoothing esca- 

parametric model is used to guide the analysis. When the 
lates exponentially. Unless we have a gigantic sample, 
standard methods, such as kernel estimates or nearest-

model is parsimonious, standard estimation techniques such 
neighbor estimates, break down quickly because of the 

as the maximum likelihood or the least squares method have 
sparseness of the data points in any region of interest. To 

proved to be successful in gathering information from the 
challenge the curse of dimensionality, one hope that stat- 

data. 
isticians may capitalize on is that interesting features of high- 

In most applications, however, any parametric model is 
dimensional data are retrievable from low-dimensional pro- 

at best an approximation to the true one, and the search for 
jections. For regression problems, the following model de- 

an adequate model is not easy. When there are no persua- 
scribes such an ideal situation: 

sive models available, nonparametric regression techniques 

emerge as promising alte&atives that offer the needed flex- Y = f ( P ~ x ,  P ~ x ,  . . ., PKX,€). (1.1) 

ibility in modeling. A common theme of nonparametric 

Here the p's are unknown row vectors, E is independent of 
regression is the idea of local smoothing, which explores x, and f is an arbitrary unknown function on R ~ " .  
only the continuity or differentiability property of the true 

When this model holds (cf. ~ e m k k  1. I), the projection 
regression function. The success of local smoothing hinges of the p-dimensional explanatory variable x onto the K di-
on the presence of sufficiently many data points around each 

mensional subspace, (P,x, . . . , PKx)', captures all we need 
point of interest in the design space to provide adequate 

to know about y.  When K is small, we may achieve the 
information. For one-dimensional problems, many smooth- goal of data reduction by estimating the p's efficiently. For -

convenience, we shall refer to any linear combination of 
* Ker-Chau Li is Professor, Division of Statistics, Department of Math- the p's as an effective dimension-reduction (e.d.r.) direc- 
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the dimension has been lowered (cf. Remark 1.2). On the 
other hand, during the exploratory stage of data analysis, 
one often wants to view the data directly. Many graphical 
tools are available (see, for instance, the special applica- 
tions section on statistical graphics, introduced by Cleve- 
land 1987), but plotting y against every combination of x 
within a reasonable amount of time is impossible. So, to 
use the scatterplot-matrix techniques (Carr et al. 1987), we 
often focus on coordinate variables only. Likewise, 3-D ro- 
tating plots (e.g., see Huber 1987) can handle only one 
two-dimensional projection of x at a time (the third dimen- 
sion is reserved for y). Therefore, to take full advantage of 
modem graphical tools, guidance on how to select the pro- 
jection directions is clearly called for. A good estimate of 
the e.d.r. directions can lead to a good view of the data. 
Section 6.3 demonstrates how sharp the view found by our 
method is. 

Our method of estimating the e.d.r, directions is based 
on the idea of inverse regression. Instead of regressing y 
against x (forward regression) directly, we regress x against 
y (inverse regression). The immediate benefit for exchang- 
ing the roles of y and x is that we can side-step the di- 
mensionality problem. This comes out because inverse 
regression can be carried out by regressing each coordinate 
o f x  against y. Thus we essentially deal with a one-dimen- 
sion to one-dimension regression problem, rather than the 
high-dimensional forward regression. 

The feasibility of finding the e.d.r. directions via inverse 
regression will become clear. As y varies, E(x 1 y) draws 
a curve, called the inverse regression curve, in RP. Under 
(1. I), however, this curve typically will hover around a K-
dimensional affine subspace. At one extreme, as shown in 
Theorem 3.1 of Section 3, the inverse regression curve ac- 
tually falls into a K-dimensional affine subspace determined 
by the e.d.r. directions, provided that the distribution of x 
satisfies (3.1). If we have standardized x to have mean 0 
and the identity covariance, then this subspace coincides 
with the e.d.r. space. Elliptically symmetric distributions, 
including the normal distribution, satisfy condition (3.1). 

Exploring the simplicity of inverse regression, we de- 
velop a simple algorithm, called sliced inverse regression 
(SIR), for estimating the e.d.r. directions. After standard- 
izing x, SIR proceeds with a crude estimate of the inverse 
regression curve E(x I y), which is the slice mean of x after 
slicing the range of y into several intervals and partitioning 
the whole data into several slices according to the y value. 
A principal component analysis is then applied to these slice 
means of x, locating the most important K-dimensional 
subspace for tracking the inverse regression curve E(x I y). 
The output of SIR is these components after an affine re- 
transformation back to the original scale. 

In Section 5, under the design condition of (3. I), we show 
that SIR yields root n consistent estimates for the e.d.r. 
directions. 

Besides offering estimates of e.d.r, directions, the out- 
puts of SIR are themselves interesting descriptive statistics 
containing useful information about the inverse regression 
curve. 1'n Section 7, we elaborate this point further and ar- 
gue that the directions produced by SIR can be used to form 

variables (derivable from x linearly) that are most predict- 
able from y. Thus for graphical purposes, even if the design 
condition (3.1) is not satisfied, SIR still suggests interesting 
directions for viewing the data. 

As a sharp contrast to most nonparametric techniques that 
require intensive computation, SIR is very simple to im- 
plement. Moreover, the sampling property of SIR is easy 
to understand, another advantage over other methods. Thus 
it is possible to assess the effectiveness of SIR by using the 
companion output eigenvalues at the principal component 
analysis step (see Remark 5.1 in Section 5). These eigen- 
values provide valuable information for assessing the num- 
ber of components in the data (see Remark 5.2). Finally, 
selection of the number of slices for SIR is less crucial than 
selection of the smoothing parameter for typical nonpara- 
metric regression problems. We further illustrate these points 
by simulation in Section 6. 

In view of these virtues, however, SIR is not intended 
to replace other computer-intensive methods. Rather it can 
be used as a simple tool to aid other methods; for instance, 
it provides a good initial estimate for many methods based 
on the forward regression viewpoint. Because of low com- 
puting cost, one should find it easy to incorporate SIR into 
most statistical packages. 

Remark 1 . l .  All models are imperfect in some sense 
and (1.1) should be interpreted as an approximation to real- 
ity. However, there is a fundamental difference between 
this and other statistical models: (1.1) takes the weakest 
form for reflecting our hope that a low-dimensional pro- 
jection of a high-dimensional regressor variable contains most 
of the information that can be gathered from a sample of a 
modest size. Equation (1.1) does not impose any structure 
on how the projected regressor variable affects the output 
variable. In addition, we may even vary K to reflect the 
degree of the anticipated dimension reduction. At K = p, 
(1.1) becomes a redundant assumption. By comparison, most 
regression models assume K = 1, with additional structures 
on f. 

Remark 1 -2. A philosophical point needs to be empha- 
sized here: The estimation of the projection angles can be 
a more important statistical issue than the estimation of the 
structure off itself. In fact, the structure off is impossible 
to identify unless we have other scientific evidence beyond 
the data under study. One can obtain two different versions 
off to represent the same joint distribution of y and x [cf. 
(2. I)]. Thus what we can estimate are at most statistical 
quantities, such as the conditional mean or quantiles of y 
given x. On the other hand, during the early stages of data 
analysis, when one does not have a fixed objective in mind, 
the need for estimating such quantities is not as pressing as 
that for finding ways to simplify the data. Our formulation 
of estimating the e.d.r. directions is one way to address 
such a need in data analysis. After finding a good e.d.r. 
space, we can project data into this smaller space. We are 
then in a better position to identify what should be pursued 
further: model building, response surface estimation, clus- 
ter analysis, heteroscedasticity analysis, variable selection, 
or inspecting scatterplots (or spin-plots) for interesting fea- 
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tures. This approach toward data analysis is different from 
that in many other works. Projection pursuit regression 
(Friedman and Stuetzle 1981), ACE and additive models 
(Breiman and Friedman 1985; Stone 1986; Hastie and Tib- 
shirani 1986), or partial splines (Chen 1988b; Cuzik 1987; 
Engle, Granger, Rice, and Rice 1986; Heckman 1986; 
Speckman 1987; Wahba 1986), for instance, seem to have 
singled out the approximation of the conditional mean of 
the output variable (or its transformation) as their primary 
goal. But dimension reduction in statistics has a wider scope 
than functional approximation. The concept of e.d.r. space 
and the method of SIR aim at this general purpose of di- 
mension reduction. 

After dimension reduction, if we want to estimate the 
response surface, for example, we can apply standard tech- 
niques in nonparametric regression to the projected vari- 
ables (e.g. Li 1987 and the references therein). In addition, 
suitable conditional influence as in the Box-Cox transfor-
mation study (Hinkley and Runger 1984) may be valuable. 
Needless to say, the door is open for further serious work. 

2. A MODEL FOR DIMENSION REDUCTION 

Equation (1.1) describes an ideal situation where one can 
reduce the dimension of the explanatory variable from p to 
a smaller number K without losing any information. An 
equivalent version of (1.1) is: The conditional distribution 
of y given x depends on x only through the K dimensional 
variable (P,x, . . ., PKx) Thus conditional on Pkx's, y and 
x are independent; the perfectly reduced variable, (Pix, . . . , 
P,x), is seen to be as informative as the original x in pre- 
dicting y. 

Recall the terminology of e.d.r. direction and e.d.r. space 
from Section 1. Observe that by changing f suitably, (1.1) 
can be reparameterized by any set of K linearly independent 
e.d.r. directions. Another interpretation is that conditioning 
on (P,x, . . .,PKx) is equivalent to conditioning on any non- 
degenerate affine transformation of this vector. Thus it is 
the e.d.r. space B that can be identified; the individual vec- 
tors PI ,  . . ., PKare not themselves identifiable (unless fur- 
ther structural conditions on f are imposed). 

Let X, be the covariance matrix of x. Later on, we shall 
find it convenient to consider the standardized version of 
x, z = 2&1'2[X - E(x)]. We may rewrite (1.1) as 

where vk = pkX2(k = 1, . . .,K). We shall call any vector 
in the linear space generated by the 7;s a standardized e.d.r. 
direction. 

We will discuss the relationship of our model to others 
subsequently. 

First of all, it is fair to say that one-component models 
(K = 1) prevail in the literature; for instance, the gener- 
alized linear model, the Box-Cox transformation model and 
its generalization (Box and Cox 1964; Bickel and Doksum 
198 1 ;Carroll and Ruppert 1984) and others. Brillinger (1 977, 
1983) derived a surprising result about the robustness of 
least squares estimation under a global misspecification of 
the link function. Li and Duan (1989) generalized Brillin- 
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ger's result to a general class of maximum likelihood type 
estimators. 

Turning to the multicomponent model (K > I), observe 
that the conditional expectation E(y I x), the forward 
regression surface, takes the form g(P,x, . . ., P,x). From 
the forward regression viewpoint, after projecting x onto 
any K-dimensional subspace (with a basis, say, b,, . . ., b,), 
it is possible to estimate the conditional expectation E(y 
bkx9s) nonparametrically. The average conditional variance 
E[var(y I b,x's)] is minimized when the projection space 
coincides with the space of the e.d.r. directions. We are 
led to a variant of the projection pursuit method studied in 
Chen (in press), which estimates the e.d.r. space by glob- 
ally searching for a best K-dimensional projection that min- 
imizes a lack-of-fit measure based on the residual sum of 
squares. Large-sample results were derived, but the method 
appears to be highly computer-intensive because one has to 
worry not only about how to do a global search efficiently 
but also about how to do the multidimensional smoothing. 

If the conditional expectation E(y I x) takes the additivity 
form, g,(P,x) + . . - + gK(PKx), then one may use the pro- 
jection pursuit regression algorithm (PPR) as described in 
Friedman and Stuetzle (1981) to estimate the e.d.r. direc- 
tions. Donoho and Johnstone (1989), Hall (1989), and Huber 
(1985) add more insight to PPR. 

Another possible forward regression route to attack this 
problem is based on the observation that under (1. I), any 
slope vector, the derivative of y with respect to x at any 
point, falls within the e.d.r. space B. Thus if we can es- 
timate the slope vectors well, we may apply a principal 
component analysis to the estimated slope vectors to find 
the e.d.r. directions. The main difficulty for this approach, 
however, is the estimation of the derivatives for high 
dimensional x. 

Many recent works are related to data reduction. A short 
and incomplete list includes the correspondence analysis 
approach (e.g., van Rijckevorsel and de Leeuw 1988), 
classification trees (e. g ., Breiman, Friedman, Olshen, and 
Stone 1984; Loh and Vanichsetakul 1988), ACE and ad- 
ditive models (Breiman and Friedman 1985; Koyak 1987; 
Stone 1986), and partial spline moddls (Chen 1988; Cuzick 
1987; Engle et al. 1983; Heckman 1986; Speckman 1987; 
Wahba 1986), and projection pursuit density estimation (e.g ., 
Diaconis and Freedman 1984; Friedman 1987; Huber 1985). 

We conclude this section by discussing the question of 
how to evaluate the effectiveness of an estimated e.d.r. di- 
rection. An obvious criterion is based on the squared Eu- 
clidean distance between the estimated e.d.r. direction b 
(normalized to have the unitary length) and the true e.d.r. 
space B. This criterion, however, is not invariant under scale 
change or affine transformation of x. We prefer an affine 
invariant criterion, 

(bX,P1>'
~ ' ( b )= max 

P E B  bCub ' PZXxP1! 
the squared multiple correlation coefficient between the 
projected variable bx and the ideally reduced variables P,x, 
. . .,P,x. For a collection of K estimated directions b,, . . ., 
b, generating a linear subspace B ,  we use the squared trace 
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correlation, denoted by R~(B),as our criterion: the average 
of the squared canonical correlation coefficients between 
b,x, . . . , bKx and P,x, . . . , PKx (Hooper 1959). It is also 
reasonable to replace X, by the sample covariance matrix 
in our definition of the criteria. 

3. THE INVERSE REGRESSION CURVE 

Consider the trajectory of the inverse regression curve 
E(x / y) as y varies. The center of this curve is located at 
E(E(x / y)) = E(x). In general, the centered inverse regres- 
sion curve, E(x I y) - E(x) is a p-dimensional curve in 
RP.We shall see that it lies on a K-dimensional subspace, 
however, with the following condition on the design 
distribution: 

Condition 3.l. For any b in RP,the conditional expec- 
tation E(bx I Pix, . . ., PKx) is linear in P,x, . . ., PKx; that 
is, for some constants co, c,, . . ., cK, E(bx I P,x, . . ., PKx) 
= c0 + clPlx + ... + cKPKx. 

This condition is satisfied when the distribution of x is 
elliptically symmetric (e.g., the normal distribution). More 
discussion of this condition is given in Remark 3.3. The 
following theorem will be proved in the Appendix. 

Theorem 3. I .  Under the conditions (1.1) and (3. I), the 
centered inverse regression curve E(x I y) - E(x) is con- 
tained in the linear subspace spanned by P,XXx(k = 1, . . . , 
K), where Cxx denotes the covariance matrix of x. 

Corollary 3.l. Assume that x has been standardized to 
z. Then under (2.1) and (3. I), the standardized inverse 
regression curve E(z / y) is contained in the linear space 
generated by the standardized e.d.r. directions r ] ,  , . . ., r]K. 

An important consequence of this corollary is that the 
covariance matrix cov[E(z / y)] is degenerate in any direc- 
tion orthogonal to the vk ' s  We see, therefore, that the ei- 
genvectors, qk(k = 1, . . ., K), associated with the largest 
K eigenvalues of cov[E(z / y)] are the standardized e.d.r. 
directions. Transforming back to the original scale, 
r]kX-"2 (k = 1, . . ., K) are in the e.d.r. space. This leads 
to the SIR algorithm of the next section. 

Remark 3.1. Conditional covariance cov(z / y) can also 
reveal valuable clues for finding the standardized e.d.r. di- 
rections. To see this, simply observe the identity 

E[cov(z 1 y)] = cov z - COV[E(ZI y)] = I - cov[E(z I y)]. 

Therefore, after an eigenvalue decomposition of E[cov(z / 
y)], we may find the standardized e.d.r. directions from the 
eigenvectors associated with the smallest K eigenvalues. The 
estimation of E[cov(z I y)] is not difficult; see Remark 5.3. 

Remark 3.2. Regression models are usually formed by 
decomposing the joint distribution of y and x as h(y / x)k(x) 
and modeling h(y 1 x). This is the forward view of regres- 
sion. The inverse view of regression factorizes the joint 
density as h(x I y)k(y) and models h(x I y). Important cases 
of inverse formation include discriminant analysis (with lo- 
gistic regression as the counterpart from the forward view). 
SIR is itself meaningful from the inverse view of modeling. 

It is interesting to observe that we may consider y as a pa- 
rameter with an empirical Bayes prior. 

Remark 3.3. Condition (3.1) seems to impose a strin- 
gent requirement on the distribution of x. One implication 
is that, at the stage of data collection, unless the functional 
form of the response surface is known, we had best design 
the experiment so that the distribution of x will not blatantly 
violate elliptic symmetry. For example, rotatable designs, 
advocated by George Box (see, e. g., Box and Draper 1987) 
in the response surface literature, deserve to be studied more 
closely in the future. On the other hand, after data collec- 
tion, it would help the analysis if closer examination of the 
distribution of x can be made so that outliers can be re- 
moved or clusters can be separated before analysis. 

An interesting extension of Corollary 3.1 will be to quan- 
tify how far away from the standardized e.d.r. space the 
inverse regression curve E(z / y) is when (3.1) is mildly 
violated. If the projection of E(z I y) on the orthogonal com- 
plement of the standardized e.d.r. space is small, then the 
directions picked up by the principal component analysis 
on cov[E(z I y)] will still be close to the standardized e.d.r. 
directions. The situation is similar to that in Brillinger (1977, 
1983) where consistency of least squares in estimating PI 
for one-component models under (3.1) is proved. Further- 
more, empirical evidence was reported indicating that his 
result is not sensitive to violation of (3.1). A comprehen- 
sive account of this robustness issue for the least squares 
and other commonly used regression estimates is given in 
Li and Duan (1989). 

After the first version of our article was written, this de- 
sign robustness issue was further addressed in three articles. 
First, a bound to bias in estimation was obtained in Duan 
and Li (in press) for K = 1. Moreover, Li (1989) argued 
that for most directions b, we can expect the linearity in 
(3.1) to hold approximately, borrowing a powerful result 
from Diaconis and Freedman (1984) where they showed 
that most low-dimension projections of a high-dimension 
data cloud are close to being normal. Li (1989) also dem- 
onstrated how SIR may find the directions that violate (3.1) 
most seriously. Li (1990b) extended the discussion to a 
framework for the uncertainty analysis of mathematical 
models. 

4. SLICED INVERSE REGRESSION 

A scheme for sliced inverse regression operates on the 
data (y,, xi) (i = 1, . . . , n), in the following way: 

1. Standardize x by an affine t ransfo~at ion  to get f, = 

$i1'2(xi - X) (i = 1, . . . , n), where X, and X are the 
sample covariance matrix and sample mean of x respec- 
tively. 

2. Divide range of y into H slices, I,, . . . , I,; let the 
proportion of the yi that falls in slice h be Ijh; that is Dh = 

(l/n) X:='=,S,(yi), where Sh(yi) takes the values 0 or 1 de- 
pending on whether yi falls into the hth slice I, or not. 

3. Within each slice, compute the sample mean of the 
fi 's ,  denoted by Ah (h = 1, . . . ,H),  so that mh = (l/nDh) 
Z y i ~ l hxi. 

4. Conduct a (weighted) principal component analysis 
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for the data m, (h = 1, . . . ,H) in the following way: Form 
the weighted covariance matrix Q = Z;= @,&, A;, then find 
the eigenvalues and the eigenvectors for Q. 

5. Let the K largest eigenve~tors (row vectors) be fjk (k 
= 1, . . ., K). output Bk = fjk2i1,'/'(k = 1, . . ., K). 

Steps 2 and 3 produce a crude estimate of the standard- 
ized inverse regression curve E(z I y). Although it is fea- 
sible to use more sophisticated nonparametric regression 
methods such as kernel, nearest neighbor, or smoothing 
splines to yield a better estimate of the inverse regression 
curve, we advocate only the method of slicing due to its 
simplicity. Since we only need the main orientation (but 
not any other detailed aspects) of the estimated curve, pos- 
sible gains due to smoothing are not likely to be substantial. 

The weighting adjustment for principal component anal- 
ysis in Step 4 takes care of the case where there may be 
unequal sample sizes in different slices. The first K com- 
ponents locate the most important subspace to track the 
standardized inverse regression curve E(z I y). Finally, Step 
5 retransforms the scale back to the original one. Thus pk7s 
can be used as estimates of the e.d.r. directions and the 
e.d.r. space B is estimated by 8, the space generated by 
the jk3s .  

A few remarks about the actual implementation are in 
order. 

Remark 4.1 .  It is not necessary to transform each in- 
dividual xi to 5ii. All we need is to transform the slice means 
before conducting theAprincipal component analysis to save 
computing time. Let 2, be Z;=, DhGh- Z)(JZh - % ) I ,  where-
xh denotes the sample mean of the xi's in the hth slice. Then 
the Bk's are j!st the eigenvectors for the eigenvalue decom- 
position of 2, with respect to Z,,. Using the terminology 
of MANOVA (e.g., Mardia, Kent, and Bibby 1979, chap. 
12), 2,  describes the between-slice variation. 

Remark 4.2 .  The range for each slice may be set to 
have equal length; but in section 6, we prefer to allow it 
to vary so that the number of observations in each slice can 
be as close to each other as possible. 

Remark 4.3 .  The choice of the number of slices may 
affect the asymptotic variance of the output estimate. How- 
ever, the difference is not significant for practical sample 
sizes in our simulation study. This issue here is less critical 
than the choice of a smoothing parameter in nonparamet- 
ric regression. Theoretically an inappropriate choice of 
smoothing parameter in nonparametric regression or den- 
sity estimation may lead to a slower rate of convergence, 
while for our case we can still have root n consistency no 
matter how H is chosen; see Remark 5.3 in Section 5. For 
a comprehensive treatment of adaptive choice of smoothing 
parameter in nonparametric regression, see Li (1987), and 
Hiirdle, Hall, and Marron (1988). 

Remark 4.4 .  When standardizing x, it is not necessary 
to base the affine transformation on the sample mean and 
sample covariance matrix. Some robust versions of them 
may be preferable (see Donoho, Johnstone, Rousseeuw, and 
Stahel 1985; Fill and Johnstone 1984; and Li and Chen 1985). 
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At least we should downweight or cut out those influential 
design points. But this issue is probably less crucial and is 
relatively easy to handle because we are dealing with the 
design points that are under our control (even in the ob- 
servational study, we may screen out some bad design points; 
if the percentage of the remaining points is high enough we 
can still have a good analysis). Note that the efficiency of 
the affine transformation is not the main concern because 
we need only a consistent estimate to make SIR work. 

Remark 4.5.  If the standardized inverse regression curve 
falls within a proper subspace of the standardized e.d.r. 
space, then SIR cannot recover all e.d.r. directions. For 
instance, if y = g(P,x) + E for some symmetric function 
g, and @,x is also symmetric about 0, then E(x I y) equals 
0, and PI is a poor estimate of PI .  For handling such cases, 
one approach is to explore higher conditional moments of 
x given y. For instance, if x is normal, then for any direc- 
tion bx orthogonal to the P~x's ,  we see that var(bx I y) re- 
mains invariant as y changes. In particular, for standardized 
x, the eigenvectors of cov(x I y E I,) with eigenvalues dif- 
ferent from 1 are in the e.d.r, space. Thus if an eigenvalue 
decomposition on the sample covariance of the 5ii9s, de- 
noted as COV,, for each slice h is conducted, then we may 
combine those eigenvectors with eigenvalues significantly 
different from 1 from each slice in a suitable way to esti- 
mate Pk's. Details on ways of combination are under in- 
vestigation. It is not always necessary to conduct the ei- 
genvalue decomposition separately for each slice, however. 
For instance, one may treat it as an approximation problem 
of fitting each COV, - I separately by a nonnegative def- 
inite matrix of rank K with the constraint that the fitted 
matrices have a common range. Another second moment 
method and a method based on the notion of principal Hes- 
sian directions were suggested in Li (1989, 1990a). More 
recently, the author also learned that Cook and Weisberg 
have independently obtained some good estimates based on 
the second moments. 

5. SAMPLING PROPERTIES 

In this section we present a brief argument to show how 
the output of SIR provides root n consistent estimates for 
the e.d.r. directions. 

Let ph = Pr{y E I,) and m, = E(z I y E I,), where z 
stands for the standardized x, as defined in Section 2. El- 
ementary probability theory shows that m, converges to m, 
at rate n-'/'. Let V be the matrix Z;=, phmhm;. Clearly the 
weighted covariance Q in Step (4) of SIR converges to V 
at the root n rate. Consequently, the eigenvectors of 9 ,  fjk 
(k = 1, . . . , K),  converge to the corresponding eigenvec- 
tors for V at the root n rate. Now we use Corollary 3.1 and 
the simple identity mh = E[E(z I y) I y E I,] to see that the 
first K 9igenvectors of V fall in the standardized e.d.r. space. 
Since 2;','/' converges to 2,;'/', we see that each Bk con-
verges to an e.d.r. direction at rate root n. 

The case where the range of each slice varies in order to 
ensure an even distribution of observations is related to the 
following choice of intervals: 
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where F,( .)  is the cdf of y. The root n consistency result 
still holds. 

Remark 5.1.  It is possible to establish the asymptotic 
normality of the 6,'s and to calculate the asymptotic co- 
variance matrices using the delta method as in Mallows 
(1961) or Tyler (1981). In the Appendix we show how to 
approximate the expectation of R~(B),  the squared trace cor- 
relation between Pkx's and pkx7s (see the last paragraph of 
section 2). For the normal x, we have the following simple 
approximation: 

where Ak is the kth eigenvalue of V. A crude estimate of 
this quantity is given by substituting the kth largest eigen- 
value of v for A,. 

Remark 5.2.  To be really successful in picking up all 
K dimensions for reduction, the inverse regression curve 
cannot be too straight. In other words, the first K eigen-
values for V must be significantly different from zero com- 
pared to the sampling error. This can be checked by the 
companion output eigenvalues of Q in Step (4) of the SIR. 
The asymptotic distribution of the average of the smallest 
p - K eigenvalues, denoted by for v can be derived 
based on perturbation theory for finite-dimensional spaces 
(Kato 1976, chapter 2). For normal x, we have the follow- 
ing result. 

Theorem 5.1.  If x is normally distributed, then n(p -
K)A(,-,, follows a X2 distribution with ( p  - K)(H - K -
1) df asymptotically. 

We may use this result to give a conservative assessment 
of the number of components in the model. Thus if the 
rescaled A(,-,, is larger than the corresponding X2  value (say 
the 95th percentile), then we may infer that there are at 
least k + 1 (significant) components in the model. For other 
elliptically symmetric distributions, the result is more com- 
plicated. Although it is possible to estimate the asymptotic 
distribution using some version of the bootstrap method, we 
feel it is good enough to use the normal case result as a 
guideline to keep our procedure as simple as possible. An 
outline for the proof of the asymptotic result discussed here 
is given in the Appendix. A referee pointed out the simi- 
larity between this result and the result of a likelihood ratio 
test in MANOVA (Mardia et al. 1979, p. 342; further con- 
nection between SIR and sec. 12.5.4 of that reference can 
also be drawn). We remind the reader, however, that the 
fundamental assumption about the error distribution in 
MANOVA is not satisfied for our case. The conditional 
distribution of x given y is not normal, even if x is normal 
unconditionally. Furthermore, the conditional variance of x 
given y E I,, depends on h. Hence one has to be very careful 
if linking of SIR with MANOVA is desired. 

Remark 5.3.  Can SIR still yield reasonable estimates if 
the number of slices increases too fast and the number of 
observations in each slice is too small for rfzh to consistently 
estimate mh?Remark 3.1 offers an answer. First, we see 
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that the following is one way to estimate E[cov(z I y)]: 

(a) Introduce a large number of slices for partitioning the 
range of y . 

(b) Within each slice, form the sample covariance of 2,'s 
that fall into that slice. 

(c) Form an average of the estimated conditional co-
variances of (b) . 

Intuitively, in order to get rid of the bias for estimating the 
conditional variance cov(z 1 y) for each y in (b), we hope 
that the range of each slice will converge to 0, so that only 
local points will contribute to the estimation. But when the 
number of slices is too large, the sampling variance in each 
estimate of cov(z / y) may not diminish, even for large n. 
Fortunately, the averaging process of (c) will stabilize the 
final estimate by the law of large numbers. As a matter of 
fact, even if the slice number is n/2, so that each slice 
contains only two observations, the resulting estimate will 
still be root n consistent. 

The interesting connection of this estimate of E[cov(z / 
y)] to SIR is that this estimate is proportional to I - v 
because of the sample version of the identity given in Re- 
mark 3.1. Because of this conjugate relationship, a prin- 
cipal component analysis on the above estimate of E[cov(z 
( y)] for the smallest K components is equivalent to a prin- 
cipal component analysis on 9 for the largest K compo- 
nents. This explains why a large number of slices may still 
work, bolstering our earlier claim that the selection of H 
is not as crucial as the choice of a smoothing parameter 
in most nonparametric regression or density estimation 
problems. 

Remark 5.4.  It is interesting to study the asymptotic be- 
havior of the SIR estimate when both the sample size and 
the dimension p of x increase simultaneously, but the num- 
ber of components K and the number of slices H are kept 
fixed. One can see that a sufficient condition for the rjk to 
converge to 1 7 ~(in the sense that the angle between the two 
converges to 0) in probability is that the maximum singular 
value for - V converges to 0 in probability. When the 
eigenvalues of V are bounded away from 0 and infinity as 
n increases, the above sufficient condition is implied by the 
condition that p/n converges to 0 in such a way that the 
difference b~tween the maximum eigenvalue of the sample 
covariance xxxand that of xxxconverges to 0. This shows 
the potential of SIR for handling high-dimensional data. 
Asymptotic settings that allow p to increase are more ap- 
propriate in reflecting the situations where dimension-re- 
duction techniques are called for. Diaconis and Freedman 
(1984) illustrated this well. See also Portnoy (1985) and 
references therein for the context of robust regression. 

6. SIMULATION RESULTS 

To demonstrate how SIR works, we have conducted sim- 
ulation studies, and some of the results are reported here. 
The first subsection describes the behavior of the estimates; 
the second subsection discusses the eigenvalues and their 
role in estimation; and the third subsection demonstrates the 
graphical aspect of the e.d.r. direction estimation. 
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Table 4. Sample Quantiles and Means of A,, A,, and A,,, for the 100 Replicates Used in Obtaining the Columns 
of H = 10 in Tables 2 and 3 

Model 1% 5% 10% 25% 50% 75% 90% 95% 99% Mean 

1 0&,) 	 quadratic u = 1 .10 .12 .13 .14 .16 .18 .20 .20 .24 .16 
quadratic u = .5 .09 .12 .13 .15 .16 .18 .20 .22 .27 .17 
rational function o = 1 .09 . l l  .13 .14 .16 .19 .20 .21 .27 .16 
rational function u = .5 .13 .13 .14 .16 .18 .20 .23 .24 .27 .18 

10A(g) quadratic u = 1 .17 .18 .19 .22 .24 .27 .29 .32 .33 .24 
quadratic u = .5 .19 .22 .24 .27 .30 .33 .35 .37 .43 .30 
rational function u = 1 .16 .18 .20 .22 .24 .27 .30 .32 .35 .25 
rational function u = .5 .28 .29 .30 .34 .36 .40 .43 .46 .53 .37 

1 
-X:P  	 .13 .15 .16 .18 .20 .22 .24 .26 .29 .20 
360 


1 ox,,,, 	 quadratic u = 1 .28 .33 .34 .38 .42 .47 .53 .55 .58 .43 
quadratic u = .5 .39 .43 .45 .49 .53 .57 .64 .66 .70 .54 
rational function o = 1 .34 .36 .38 .40 .43 .49 .51 .55 .61 .44 
rational function u = .5 .58 .63 .65 .69 .74 .79 .82 .85 .90 .74 

shows a substantial overlap with the rescaled x2. This is first ask which one-dimensional variable (derivable from x 
reflected in the relatively lower average and higher standard linearly) is most predictable from y. This question was asked 
deviation of R2(p2) in Table 2. But a positive point is that and answered by Hotelling (1935), with the restriction that 
by comparing A(,, with the rescaled x2 ,  we realize that our the prediction rules must be linear. Hotelling's solution, for 
data do not strongly support the claim that the estimated a multivariate y, leads to the analysis of canonical correlation. 
second component is real. Without the linearity constraint on the prediction rules, 

Finally, A,,,, is well above the associated x2 ,  assuring the for a variable bx, the best prediction (under the squared 
high average and the low standard deviation of R2(b1) in all error loss) is given by E(bx I y), a nonlinear function of y 
cases. in general. Thus the most predictable variable is the one 

6.3. Graphics 	 which maximizes 

We shall demonstrate how effective the estimated e.d.r. 
directions for (6.3) can be when used to view the data via 
spinning plots. For comparison, we also present the best where z is the standardized x as defined before. Clearly, 
view of the data, y against x,, x,. The best view is only the solution is given by 771Ci1'2, where 77, denotes the larg- 
possible in simulation study. First, Figure 1 shows the pic- 
ture of the response surface in (6.3). 

The rest of the study is carried out using XLISP-STAT 
(Tiemey 1989). We set p = 10 and (+ = .5 to generate n 
= 400 cases according to (6.3). The best view of the data 
is given in Figure 2, a-d, which shows four different angles 
from which to view the plot as we rotate it along the y axis 
every 45". We then run SIR on the generated data with H 
= 5 and 30 and plot y against p,x, p2x using the spin-plot 
command in XLISP-STAT (Figures 3 and 4). Evidently, 
SIR yields a very sharp view of the data. We also see that 
the choice of H has very little visual effect, confirming our 
theoretical argument given in Remark 4.3 and Remark 5.3. 

7. DESCRIPTIVE STATISTICS A N D  SIR 

We conclude this article by arguing that besides offering 
e.d.r. estimates, SIR gives useful descriptive statistics for 
cases in observational studies where we may think of x as 
the dependent variable and y as the independent variable. 

According to the interpretation following (2. l ) ,  the for- 
ward view of data reduction aims at seeking a K-dimen- 
sional variable (derivable from x linearly) that predicts y 
most effectively. Now, reversing the role of y and x, let us Figure 1. Response Surface of (6.3). 
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Figure 2. Best View of Data Generated From (6.3) With a = .5,p = 10. 

est eigenvector of cov[E(z I y)]. This is what the first com- 
ponent of SIR, b,, attempts to estimate. 

Generalizing the above argument, the projection direc- 
tion yielding the variable that is most predictable from y, 
subject to being uncorrelated with the first most predictable 
variable, is a direction estimated by b,. Similar intepreta- 
tion extends to the other b,. 

Since the appearance of the first version of this article, 
four related works have been written. Duan and Li (in press) 
studied SIR for the case where K = 1 in more detail. They 
generalized the implementation of SIR by allowing a gen- 
eral weighting scheme for conducting the principal com-
ponent analysis. Li (1989) examined SIR from a different 
angle. A projection pursuit approach was taken there, based 
on the notion of dependent variable transformation to pro- 
vide a projection index. It brought out a nice connection 
with other works related to transformations (e.g., corre-
spondence analysis, ACE, and the dummy variable ap-
proach to multivariate analysis by the Gifi school) Li (1990a) 
proposed a new method for handling the case where the 
regression function may be symmetric. Li (1990b) applied 
SIR to uncertainty analysis of mathematical models or com- 
puter models. SIR was used to visualize and simplify the 
models. 

APPENDIX 

A.1. Proof of Theorem 3 .1 .  Without loss of generality, as- 
sume that E(x) = 0 .  Consider any vector b in the orthogonal com- 
plement of the space spanned by Pk8,,(k = 1 ,  . . . .  K ) ;  that is, 
PkX,bl = 0 .  We need to show that bE(x I y) = 0 with probability 
1 .  Equation ( 1 . 1 )  implies 

Hence it suffices to show that E(bx I pix's) = 0; or equivalently, 
E[(E(bx I P ~ x ' s ) ) ' ] = 0 .  By conditioning, the left term can be 
written as E[E(bx I Pkx's)xfb'], which equals E[(co + Zf=, 
c ~ P ~ x ) x ' ~ ' ]  ckPkZxxbl O .  The proof of Therem 3.1 is= Zf=l = 

now complete. 

A.2. Derivation of formula (5.1)  for E[R'(B)]. Due to the 
affine invariance, we may assume that x has mean 0 and covari- 
ance 8,  = I. The squared trace correlation R ~ ( B )reduces to 

where P1and f i ,  are symmetric projection matrices associated with 
the e.d.r, space B and the estimated space B respectively. From 
steps 4 and 5 of SIR, f i l  is related to P ,  = Zf=, rj;rjk, a projection 
matrix: 

P I  = $;;/2(pl$klpl)+$;;/ ' ,  

where the superscript + denotes the Moore-Penrose generalized 
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Figure 3. SIR'S View of the Same Data as in Figure 2, H = 5. 

inverse of a matrix. Furthermore, we need the following approx- mean 0 and covariance n-'P,, leading to E(% ;P2%,) = ( p  -K ) ~ - ' I .  
imation which will be proved later: Since v converges to V ,  we obtain 

P ,  = p1 + P,(Q - QV+ + v+(P - QP, + oP(n-'/'), ( A . I )  
El  = ( p  - ~ ) n - '  

K 

A;' + o(n-I).
where P, = I - P ,  and V is defined by c F = ~ ehmhmLwith mh = k= 1 

E(x 1 Y I,). The second term E2 equals K ( p  - ~ y n - ' ,because of the inde- 
Now, approximate 2, by I + A, where A = n-' Z:=, xix; - pendence between Plx  and P2x. 

I .  Take A to be the p x H matrix (@ti2m1,. . . .@k'2m~):and verify = ~ ~ [ E ( P ~ ~ ~ ~ ~ P ~ ~ ) J A ' ~ ] .
that v = AJA', where J denotes the projection matrix I -

Write ,v3as t r [ ~ ( p l A ~ 2 % 1 ~ ~ 1 ~ ) ]  The 
( $ 1 ' ' 9  term inside the is a p  by H matrix with the hth column 

..., $ ~ i 2 ) ( $ ~ i 2 ,  ....$k/')'. Then we can derive equal to 

where the n x H matrix, % I ,equals ($Ai2(% - mh)), and X h  is where ah is defined in step 2 of SIR. Replace $,1/2 by in 
defined in Remark 4.1. the above expression and then take the expectation. The result 

It remains to calculate turns out to be n-1 i2p~/2(p- K)Plmhbecause of the independence 
E[R'(B)I = 1 - K - ' ( E ~+ E, - 2E3)+ o(n-I), between P2xl and y l .  Therefore we have 

where E3 = n-l(p - K )  tr(AJAIV+) + lower order term 
El = E [ ~ ~ ( P , % ~ J A ' ~ + ) (. . .  )'I = ~ ( t r p % ; ~ , % ~ )  


= n- ' (p  - K)K + lower order term. 

E2 = E[tr(P2AP1)(. . . )'I = n - 1 ~ ( ~ 2 ~ ~ ' ~ 1 ~ ~ ' P 2 )

Putting E l ,  E2,  E3 together, we have derived (5.1). 

= n - 1 ~ [ ( x ' ~ 1 x ) ( x ' ~ 2 x ) ]  


Proof of (A.1). The quickest way to derive this expansion is 
E3 = tr E [ ( P ~ % ~ J A ' ~ + ) ( P z ~ ~ ) ' ] .  to use Lemma 4.1 in Tyler (1981). Instead of expanding P I about 

The normality assumption on x implies that conditional on $,(k P I , we first expand P2 = I - PI  about P,. One advantage is that 
-- 1,  . . ., K ) ,  the columns of P2%,are independent normal, with there is only one eigenvalue associated with P2vP2,which is 0; 
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Figure 4 (a)-(d). Best View of the Same Data as in Figure 2, H = 30. 

so the Taylor expansion formula is simpler. This leads to 

P2 = P ,  - [P,(Q - nV++ V + ( Q- V)P, ]  + ~ , ( n - ' / ~ ) ,  

implying ( A .1). 

A.3 .  Asymptotic expansion for The following lemma 
is the key to our asymptotic expansion. 

Lemma A . l .  Consider the expansion 

T ( o )  = T + wT"' + OJ~T'~ '+ o(02) ,  

where T(w),  T ,  T'", T'" are symmetric matrices. Suppose that T 
is nonnegative definite with rank K .  Then the average of the smallest 
p - K eigenvalues of T(w) ,  A(w), has the expansion 

where A'" = tr T'I'II, A"' = tr[T(')II - T ( I ) T + T ' ~ ) I I ] ,  and II is the 
symmetric projection matrix of rank p - K such that IIT = TII 
= 0 .  

This lemma is a simplified version of a result in the pertur- 
bation theory for finite dimensional spaces (see chap. 2 of Kato 
1976, p. 79, eq. (2 .33)) .  To use this lemma, obtain, after a 
straightforward asymptotic expansion, that 

Q - V = [AJ(8;+ A"%,) + (8,+ 8,A)JA1] 

+ [(%,+ g2A)J(%;+ A'%,) + AJA'8182 

where ( e2  = $:/' - I .  Thus we may substitute V for T ,  n-I/' for 
o, Q for T(w) ,  n'" times the first bracketed term for T'", n times 
the second bracketed term for T"', and I I  by P2. 

Straightforward computation leads to 

oh'' )  = tr T'" P2P2= tr P~T'"P2 = 0 ,  

,2A '2' = tr P z ~ I Q ~ ; P z ,  

where Q = J - JA'V'AJ, a projection matrix with trace H - K 
- 1 .  Based on a conditional probability argument similar to that 
used in deriving El in ( A . 2 ) , we can show that n .tr(P2%lQ8;P2) 
follows a X 2  distribution with ( p  - K)(H - K - 1 )  degrees of 
freedom. This completes the proof. Note that the normality as- 
sumption on x is not necessary if the conditional covariance of 
P2x given y E I, does not depend on h because x, is asymptoti- 
cally normal by the central limit theorem. 

[Received July 1988. Revised March 1990.1 

REFERENCES 

Bickel, P. J., and Doksum, K. A. (1981), "An Analysis of Transfor- 
mations Revisited," Journal of the American Statistical Association, 
76, 296-31 1. 

Breiman, L., and Friedman, J. (1985), "Estimating Optimal Transfor- 
mations for Multiple Regression and Correlation," Journal of the 
American Statistical Association 80, 580-597. 

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984), Classi-
fication and Regression Trees. Belmont, CA: Wadsworth. 



327 Li: Sliced Inverse Regression 

Brillinger, D. R. (1977), "The Identification of a Particular Nonlinear 
Time Series System," Biometrika, 64, 509-515. 

Brillinger, D. R. (1983), "A Generalized Linear Model with 'Gaussian' 
Regressor Variables. " In A Festschrift for Erick L.  Lehmann, Belmont, 
CA: Wadsworth, pp. 97-1 14. 

Box, G . ,  and Cox, D. R. (1964), "An Analysis of Transformations," 
Journal of the Royal Statistical Society, Ser. B, 26, 21 1-252. 

Box, G.,  and Draper, IV. (1987), Empirical Model-Building and Re- 
sponse Surfaces, New York: John Wiley. 

Carr, D. B., Littlefield, R. J., Nicholson, W. L., and Littlefield, J. S .  
(1987), "Scatterplot Matrix Techniques for Large N," Journal of the 
American Statistical Association, 82, 424-437. 

Carroll, R., and Ruppert, D. (1984), "Power Transformations When Fit- 
ting Theoretical Models to Data," Journal of the American Statistical 
Association, 79, 321-328. 

Chen, H. (1988), "Convergence Rates for Parametric Components in a 
Partly Linear Model." The Annals of Statistics, 16, 136-146. 

(in press), "Rates of Convergence for Projection Pursuit Regres- 
sion," The Annals of Statistics. 

Cleveland, W. S. (1987), "Research in Statistical Graphics," Journal of 
the American Statistical Association 82, 419-423. 

Cuzik, J. (1987), "Semiparametric Additive Regression," unpublished 
manuscript. 

Diaconis, P., and Freedman, D. (1984), "Asymptotics of Graphical Pro- 
jection Pursuit," The Annals of Statistics, 12, 793-815. 

Donoho, D., Johnstone, I., Rousseeuw, P.,  and Stahel, W. (1985), "Dis- 
cussion of On Projection Pursuit," The Annals of Statistics, 13 496- 
499. 

Donoho, D., and Johnstone, I. (1989), "Projection-Based Smoothing, 
and a Duality With Kernel Methods," The Annals of Statistics 17, 58- 
106. 

Duan, N., and Li, K. C. (in press), "Slicing Regression: a Link-Free 
Regression Method," The Annals of Statistics. 

Engle, R. F., Granger, C. W. I., Rice, J., and Weiss, A. (1986), "Semi- 
parametric Estimates of the Relation Between Weather and Electricity 
Sales," Journal of the American Statistical Association, 81, 310-320. 

Eubank, R. L. (1988), Spline Smoothing and Nonparametric Regression, 
New York: Marcel Dekker. 

Fill, J .  A,,  and Johnstone, I. (1984), "On Projection Pursuit Measures 
of Multivariate Location and Dispersion," The Annals of Statistics, 12, 
127-141. 

Friedman, J. (1987), "Exploratory Projection Pursuit," Journal of the 
American Statistical Association, 82, 249-266. 

Friedman, J . ,  and Stuetzle, W. (1981), "Projection Pursuit Regression," 
Journal of the American Statistical Association, 76, 817-823. 

Hirdle, W. ,  Hall, P., and Marron, S. (1988), "How Far Are Automat- 
ically Chosen Regression Smoothing Parameters From Their Opti-
mum," Journal of the American Statistical Association, 83, 86- 10 1. 

Hall, P. (1989), "On Projection Pursuit Regression," The Annals of Sta- 
tistics 17, 573-588. 

Hastie, T., and Tibshirani, R. (1986), "Generalized Additive Models," 
Statistical Science, 1, 297-3 18. 

Heckman, N. (1986), "Spline Smoothing in Partly Linear Models," Jour-
nal of the Royal Statistical Society Ser. B, 48, 244-248. 

Hinkley, D. V.,  and Runger, G. (1984), "The Analysis of Transformed 

Data," with discussion, Journal of the American Statistical Associa- 
tion, 79, 302-320. 

Hooper, J. (1959), "Simultaneous Equations and Canonical Correlation 
Theory," Econometrica, 27, 245-256. 

Hotelling, H. (1935), "The Most Predictable Criterion," Journal ofEd-  
ucational Psychology, 139-142. 

Huber, P. (1985), "Projection Pursuit," with discussion, The Annals of 
Statistics, 13, 435-526. 

Huber, P. (1987), "Experiences With Three-Dimensional Scatterplots," 
Journal of the American Statistical Association, 82, 448-454. 

Kato, T. (1976), Perturbation Theory for Linear Operators (2nd ed.), 
Berlin: Springer-Verlag. 

Koyak, R. (1987), "On Measuring Internal Dependence in a Set of Ran- 
dom Variables," The Annals of Statistics, 15, 1215- 1228. 

Li, G., and Chen, 2. (1985), "Projection Pursuit Approach to Robust 
Dispersion Matrices and Principal Components: Primary Theory and 
Monte Carlo." Journal of the American Statistical Association, 80, 759- 
766. 

Li, K. C. (1987), "Asymptotic Optimality for C,, C,, Cross-Validation 
and Generalized Cross-Validation: Discrete Index Set," The Annals of 
Statistics, 15, 958-975. 

(1989), "Data Visualization With SIR: a Transformation Based 
Projection Pursuit Method," UCLA statistical series 24. 

(1990a), "On Principal Hessian Directions for Data Visualization 
and Dimension Reduction: Another Application of Stein's Lemma," 
UCLA technical report, Dept. of Mathematics. 

(1990b), "Uncertainty Analysis for Mathematical Models With 
SIR," UCLA technical report, Dept. of Mathematics. 

Li, K. C., and Duan, N. (1989), "Regression Analysis Under Link Vi- 
olation," The Annals of Statistics, 17, 1009-1052. 

Loh, W. Y., and Vanichsetakul, N. (1988), "Tree-Structured Classifi- 
cation via Generalized Discriminant Analysis," Journal of the Amer- 
ican Statistical Association 83, 715-728. 

Mallows, C. L. (1961), "Latent Vectors of Random Symmetric Matri- 
ces," Biometrika, 48, 133- 149. 

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Anal- 
ysis. New York: Academic Press. 

Portnoy, S. (1985), "Asymptotic Behavior of M-Estimators of p Regres-
sion Parameters When p2/n  is Large 11: Normal Approximation," The 
Annals of Statistics, 13, 1403-1417. 

Speckman, P. (1987), "Kernel Smoothing in Partial Linear Models," un- 
published manuscript. 

Stone, C. (1986), "The Dimensionality Reduction Principle for Gener- 
alized Additive Models," The Annals of Statistics, 13, 689-705. 

Tierney, L. (1989), "XLISP.STAT: A Statistical Environment Based on 
the XLISP Language," (Beta Test Version 2.0). School of Statistics, 
University of Minnesota. 

Tyler, D. (1981), "Asymptotic Inference for Eigenvectors," The Annals 
of Statistics, 9, 725-736. 

van Rijckevorsel, L. A,,  and de Leeuw, J.  (1988), Component and Cor- 
respondence Analysis, New York: John Wiley. 

Wahba, G. (1986), "Partial and Interaction Splines for Semiparametric 
Estimation of Functions of Several Variables," in Computer Science 
and Statistics: Proceedings of the 18-th Symposium on the Interface, 
Washington, D.C., pp. 75-80. 


